Towards a Real-Time, Label-Free, Diamond-Based DNA Sensor

Most challenging in the development of DNA sensors is the ability to distinguish between fully complementary target ssDNA (single-strand DNA) and 1-mismatch ssDNA. To deal with this problem, we performed impedance spectroscopy on DNA-functionalized nanocrystalline diamond (NCD) layers during hybridi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2007-12, Vol.23 (26), p.13193-13202
Hauptverfasser: Vermeeren, V., Bijnens, N., Wenmackers, S., Daenen, M., Haenen, K., Williams, O. A., Ameloot, M., vandeVen, M., Wagner, P., Michiels, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13202
container_issue 26
container_start_page 13193
container_title Langmuir
container_volume 23
creator Vermeeren, V.
Bijnens, N.
Wenmackers, S.
Daenen, M.
Haenen, K.
Williams, O. A.
Ameloot, M.
vandeVen, M.
Wagner, P.
Michiels, L.
description Most challenging in the development of DNA sensors is the ability to distinguish between fully complementary target ssDNA (single-strand DNA) and 1-mismatch ssDNA. To deal with this problem, we performed impedance spectroscopy on DNA-functionalized nanocrystalline diamond (NCD) layers during hybridization and denaturation. In both reactions, a difference in behavior was observed for 1-mismatch target DNA and complementary target DNA in real-time. During real-time hybridization, a decrease of the impedance was observed at lower frequencies when the complementary target DNA was added, while the addition of 1-mismatch target ssDNA caused no significant change. Fitting these results to an electrical circuit demonstrates that this is correlated with a decrease of the depletion zone in the space charge region of the diamond. During real-time denaturation, differentiation between 1-mismatch and complementary target DNA was possible at higher frequencies. Denaturation of complementary DNA showed the longest exponential decay time of the impedance, while the decay time during 1-mismatch denaturation was the shortest. The real-time hybridization and denaturation experiments were carried out on different NCD samples in various buffer solutions at temperatures between 20 and 80 °C. It was revealed that the best results were obtained using a Microhyb hybridization buffer at 80 °C and 10× PCR buffer at 30 °C for hybridization and 0.1 M NaOH at temperatures above 40 °C for denaturation. We demonstrate that the combination of real-time hybridization spectra and real-time denaturation spectra yield important information on the type of target. This approach may allow a reliable identification of the mismatch sequence, which is the most biologically relevant.
doi_str_mv 10.1021/la702143d
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754546478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69055243</sourcerecordid><originalsourceid>FETCH-LOGICAL-a413t-18d6c8222ef36fe447f668b6cdfca4da7bf0ea02f8f14feb96ad835c972282af3</originalsourceid><addsrcrecordid>eNp90E1rFEEQBuBGFLNGD_4BmYuKYJv-mv44JtlEA0sMZvTa1HRXw8T5SLp30fx7J-ySvUhOVVAPL8VLyFvOvnAm-FEPZh5KxmdkwWvBaG2FeU4WzChJjdLygLwq5YYx5qRyL8kBt4wp68SCuGb6AzmWCqofCD1tugE_VytosafnGed92cEwjZGeQMFYLS-Pq2scy5RfkxcJ-oJvdvOQ_Dw_a06_0dX3rxenxysKiss15TbqYIUQmKROqJRJWttWh5gCqAimTQyBiWQTVwlbpyFaWQdnhLACkjwkH7e5t3m622BZ-6ErAfseRpw2xZta1UorY2f54UmpHatroeQMP21hyFMpGZO_zd0A-d5z5h8a9Y-NzvbdLnTTDhj3clfhDN7vAJQAfcowhq7snXNCafbwHd26rqzx7-Md8m-vjTS1b66u5215-etk2fhmnwuh-Jtpk8e55f88-A9nJZYE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69055243</pqid></control><display><type>article</type><title>Towards a Real-Time, Label-Free, Diamond-Based DNA Sensor</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Vermeeren, V. ; Bijnens, N. ; Wenmackers, S. ; Daenen, M. ; Haenen, K. ; Williams, O. A. ; Ameloot, M. ; vandeVen, M. ; Wagner, P. ; Michiels, L.</creator><creatorcontrib>Vermeeren, V. ; Bijnens, N. ; Wenmackers, S. ; Daenen, M. ; Haenen, K. ; Williams, O. A. ; Ameloot, M. ; vandeVen, M. ; Wagner, P. ; Michiels, L.</creatorcontrib><description>Most challenging in the development of DNA sensors is the ability to distinguish between fully complementary target ssDNA (single-strand DNA) and 1-mismatch ssDNA. To deal with this problem, we performed impedance spectroscopy on DNA-functionalized nanocrystalline diamond (NCD) layers during hybridization and denaturation. In both reactions, a difference in behavior was observed for 1-mismatch target DNA and complementary target DNA in real-time. During real-time hybridization, a decrease of the impedance was observed at lower frequencies when the complementary target DNA was added, while the addition of 1-mismatch target ssDNA caused no significant change. Fitting these results to an electrical circuit demonstrates that this is correlated with a decrease of the depletion zone in the space charge region of the diamond. During real-time denaturation, differentiation between 1-mismatch and complementary target DNA was possible at higher frequencies. Denaturation of complementary DNA showed the longest exponential decay time of the impedance, while the decay time during 1-mismatch denaturation was the shortest. The real-time hybridization and denaturation experiments were carried out on different NCD samples in various buffer solutions at temperatures between 20 and 80 °C. It was revealed that the best results were obtained using a Microhyb hybridization buffer at 80 °C and 10× PCR buffer at 30 °C for hybridization and 0.1 M NaOH at temperatures above 40 °C for denaturation. We demonstrate that the combination of real-time hybridization spectra and real-time denaturation spectra yield important information on the type of target. This approach may allow a reliable identification of the mismatch sequence, which is the most biologically relevant.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la702143d</identifier><identifier>PMID: 18004892</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Base Sequence ; Biosensing Techniques ; Chemistry ; Colloidal state and disperse state ; Diamond - chemistry ; DNA - analysis ; DNA Probes ; Exact sciences and technology ; General and physical chemistry ; Microscopy, Electron, Scanning ; Nucleic Acid Denaturation ; Nucleic Acid Hybridization ; Surface physical chemistry</subject><ispartof>Langmuir, 2007-12, Vol.23 (26), p.13193-13202</ispartof><rights>Copyright © 2007 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a413t-18d6c8222ef36fe447f668b6cdfca4da7bf0ea02f8f14feb96ad835c972282af3</citedby><cites>FETCH-LOGICAL-a413t-18d6c8222ef36fe447f668b6cdfca4da7bf0ea02f8f14feb96ad835c972282af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la702143d$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la702143d$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19924608$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18004892$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vermeeren, V.</creatorcontrib><creatorcontrib>Bijnens, N.</creatorcontrib><creatorcontrib>Wenmackers, S.</creatorcontrib><creatorcontrib>Daenen, M.</creatorcontrib><creatorcontrib>Haenen, K.</creatorcontrib><creatorcontrib>Williams, O. A.</creatorcontrib><creatorcontrib>Ameloot, M.</creatorcontrib><creatorcontrib>vandeVen, M.</creatorcontrib><creatorcontrib>Wagner, P.</creatorcontrib><creatorcontrib>Michiels, L.</creatorcontrib><title>Towards a Real-Time, Label-Free, Diamond-Based DNA Sensor</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Most challenging in the development of DNA sensors is the ability to distinguish between fully complementary target ssDNA (single-strand DNA) and 1-mismatch ssDNA. To deal with this problem, we performed impedance spectroscopy on DNA-functionalized nanocrystalline diamond (NCD) layers during hybridization and denaturation. In both reactions, a difference in behavior was observed for 1-mismatch target DNA and complementary target DNA in real-time. During real-time hybridization, a decrease of the impedance was observed at lower frequencies when the complementary target DNA was added, while the addition of 1-mismatch target ssDNA caused no significant change. Fitting these results to an electrical circuit demonstrates that this is correlated with a decrease of the depletion zone in the space charge region of the diamond. During real-time denaturation, differentiation between 1-mismatch and complementary target DNA was possible at higher frequencies. Denaturation of complementary DNA showed the longest exponential decay time of the impedance, while the decay time during 1-mismatch denaturation was the shortest. The real-time hybridization and denaturation experiments were carried out on different NCD samples in various buffer solutions at temperatures between 20 and 80 °C. It was revealed that the best results were obtained using a Microhyb hybridization buffer at 80 °C and 10× PCR buffer at 30 °C for hybridization and 0.1 M NaOH at temperatures above 40 °C for denaturation. We demonstrate that the combination of real-time hybridization spectra and real-time denaturation spectra yield important information on the type of target. This approach may allow a reliable identification of the mismatch sequence, which is the most biologically relevant.</description><subject>Base Sequence</subject><subject>Biosensing Techniques</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Diamond - chemistry</subject><subject>DNA - analysis</subject><subject>DNA Probes</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nucleic Acid Denaturation</subject><subject>Nucleic Acid Hybridization</subject><subject>Surface physical chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E1rFEEQBuBGFLNGD_4BmYuKYJv-mv44JtlEA0sMZvTa1HRXw8T5SLp30fx7J-ySvUhOVVAPL8VLyFvOvnAm-FEPZh5KxmdkwWvBaG2FeU4WzChJjdLygLwq5YYx5qRyL8kBt4wp68SCuGb6AzmWCqofCD1tugE_VytosafnGed92cEwjZGeQMFYLS-Pq2scy5RfkxcJ-oJvdvOQ_Dw_a06_0dX3rxenxysKiss15TbqYIUQmKROqJRJWttWh5gCqAimTQyBiWQTVwlbpyFaWQdnhLACkjwkH7e5t3m622BZ-6ErAfseRpw2xZta1UorY2f54UmpHatroeQMP21hyFMpGZO_zd0A-d5z5h8a9Y-NzvbdLnTTDhj3clfhDN7vAJQAfcowhq7snXNCafbwHd26rqzx7-Md8m-vjTS1b66u5215-etk2fhmnwuh-Jtpk8e55f88-A9nJZYE</recordid><startdate>20071218</startdate><enddate>20071218</enddate><creator>Vermeeren, V.</creator><creator>Bijnens, N.</creator><creator>Wenmackers, S.</creator><creator>Daenen, M.</creator><creator>Haenen, K.</creator><creator>Williams, O. A.</creator><creator>Ameloot, M.</creator><creator>vandeVen, M.</creator><creator>Wagner, P.</creator><creator>Michiels, L.</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope></search><sort><creationdate>20071218</creationdate><title>Towards a Real-Time, Label-Free, Diamond-Based DNA Sensor</title><author>Vermeeren, V. ; Bijnens, N. ; Wenmackers, S. ; Daenen, M. ; Haenen, K. ; Williams, O. A. ; Ameloot, M. ; vandeVen, M. ; Wagner, P. ; Michiels, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a413t-18d6c8222ef36fe447f668b6cdfca4da7bf0ea02f8f14feb96ad835c972282af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Base Sequence</topic><topic>Biosensing Techniques</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Diamond - chemistry</topic><topic>DNA - analysis</topic><topic>DNA Probes</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nucleic Acid Denaturation</topic><topic>Nucleic Acid Hybridization</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vermeeren, V.</creatorcontrib><creatorcontrib>Bijnens, N.</creatorcontrib><creatorcontrib>Wenmackers, S.</creatorcontrib><creatorcontrib>Daenen, M.</creatorcontrib><creatorcontrib>Haenen, K.</creatorcontrib><creatorcontrib>Williams, O. A.</creatorcontrib><creatorcontrib>Ameloot, M.</creatorcontrib><creatorcontrib>vandeVen, M.</creatorcontrib><creatorcontrib>Wagner, P.</creatorcontrib><creatorcontrib>Michiels, L.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vermeeren, V.</au><au>Bijnens, N.</au><au>Wenmackers, S.</au><au>Daenen, M.</au><au>Haenen, K.</au><au>Williams, O. A.</au><au>Ameloot, M.</au><au>vandeVen, M.</au><au>Wagner, P.</au><au>Michiels, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a Real-Time, Label-Free, Diamond-Based DNA Sensor</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2007-12-18</date><risdate>2007</risdate><volume>23</volume><issue>26</issue><spage>13193</spage><epage>13202</epage><pages>13193-13202</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Most challenging in the development of DNA sensors is the ability to distinguish between fully complementary target ssDNA (single-strand DNA) and 1-mismatch ssDNA. To deal with this problem, we performed impedance spectroscopy on DNA-functionalized nanocrystalline diamond (NCD) layers during hybridization and denaturation. In both reactions, a difference in behavior was observed for 1-mismatch target DNA and complementary target DNA in real-time. During real-time hybridization, a decrease of the impedance was observed at lower frequencies when the complementary target DNA was added, while the addition of 1-mismatch target ssDNA caused no significant change. Fitting these results to an electrical circuit demonstrates that this is correlated with a decrease of the depletion zone in the space charge region of the diamond. During real-time denaturation, differentiation between 1-mismatch and complementary target DNA was possible at higher frequencies. Denaturation of complementary DNA showed the longest exponential decay time of the impedance, while the decay time during 1-mismatch denaturation was the shortest. The real-time hybridization and denaturation experiments were carried out on different NCD samples in various buffer solutions at temperatures between 20 and 80 °C. It was revealed that the best results were obtained using a Microhyb hybridization buffer at 80 °C and 10× PCR buffer at 30 °C for hybridization and 0.1 M NaOH at temperatures above 40 °C for denaturation. We demonstrate that the combination of real-time hybridization spectra and real-time denaturation spectra yield important information on the type of target. This approach may allow a reliable identification of the mismatch sequence, which is the most biologically relevant.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18004892</pmid><doi>10.1021/la702143d</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2007-12, Vol.23 (26), p.13193-13202
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_754546478
source MEDLINE; American Chemical Society Journals
subjects Base Sequence
Biosensing Techniques
Chemistry
Colloidal state and disperse state
Diamond - chemistry
DNA - analysis
DNA Probes
Exact sciences and technology
General and physical chemistry
Microscopy, Electron, Scanning
Nucleic Acid Denaturation
Nucleic Acid Hybridization
Surface physical chemistry
title Towards a Real-Time, Label-Free, Diamond-Based DNA Sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20Real-Time,%20Label-Free,%20Diamond-Based%20DNA%20Sensor&rft.jtitle=Langmuir&rft.au=Vermeeren,%20V.&rft.date=2007-12-18&rft.volume=23&rft.issue=26&rft.spage=13193&rft.epage=13202&rft.pages=13193-13202&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la702143d&rft_dat=%3Cproquest_cross%3E69055243%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69055243&rft_id=info:pmid/18004892&rfr_iscdi=true