Lateral Phase Separation in Lipid-Coated Microbubbles
In the design of lipid-coated microbubble ultrasound contrast agents for molecular imaging and targeted drug delivery, the surface distribution of the shell species is important because it dictates such properties as ligand location, brush coverage, and amount of drug loading. We used a combination...
Gespeichert in:
Veröffentlicht in: | Langmuir 2006-04, Vol.22 (9), p.4291-4297 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4297 |
---|---|
container_issue | 9 |
container_start_page | 4291 |
container_title | Langmuir |
container_volume | 22 |
creator | Borden, Mark A Martinez, Gary V Ricker, Josette Tsvetkova, Nelly Longo, Marjorie Gillies, Robert J Dayton, Paul A Ferrara, Katherine W |
description | In the design of lipid-coated microbubble ultrasound contrast agents for molecular imaging and targeted drug delivery, the surface distribution of the shell species is important because it dictates such properties as ligand location, brush coverage, and amount of drug loading. We used a combination of spectroscopy and microscopy techniques to test the prevailing notion that the main phosphatidyl choline (PC) and lipopolymer species are completely miscible within the monolayer shell. NMR spectroscopy showed that the shell composition is roughly equivalent to the bulk lipid ratio. FTIR spectroscopy showed a sharp melting peak corresponding to the main phase-transition temperature of the main PC species, with no observed pretransitions while scanning from room temperature, indicating a single PC-rich ordered phase. Electron and fluorescence microscopy showed a heterogeneous microstructure with dark (ordered) domains and bright (disordered) regions. Domain formation was thermotropic and reversible. Fluorescent labeling of the lipopolymer following shell formation showed that it partitions preferentially into the disordered interdomain regions. The ordered domains, therefore, are composed primarily of PC, and the disordered interdomain regions are enriched in lipopolymer. Phase heterogeneity was observed at all lipopolymer concentrations (0.5 to 20 mol %), and the degree of phase separation increased with lipopolymer content. The composition and temperature dependence of the microstructure indicates that phase separation is driven thermodynamically rather than being a kinetically trapped relic of the shell-formation process. The overall high variation in microstructure, including the existence of anomalous three-phase coexistence, highlights the nonequilibrium (history-dependent) nature of the monolayer shell. |
doi_str_mv | 10.1021/la052841v |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754546303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67864841</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-bbb0548c9d9a1bbddca336f32b11e7fcfbb5042e15bdbb14b64ff3b2510db5a83</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgiq4fB_-A9KLioZo0X-1RFr9gRdEVvIWZNsVot12TVvTfG9nFvYinOczDy8xLyD6jp4xm7KwBKrNcsI81MmIyo6nMM71ORlQLnmqh-BbZDuGVUlpwUWySLaYUy5nWIyIn0FsPTXL_AsEmj3YOHnrXtYlrk4mbuyodd5FUya0rfYcDYmPDLtmooQl2bzl3yNPlxXR8nU7urm7G55MUhC76FBGpFHlZVAUwxKoqgXNV8wwZs7oua0RJRWaZxAqRCVSirjlmktEKJeR8hxwvcue-ex9s6M3MhdI2DbS2G4LRUsj4HuVRHv0rlc6ViBVFeLKA8ZsQvK3N3LsZ-C_DqPlp0_y2Ge3BMnTAma1WcllfBIdLAKGEpvbQli6snNY0p0pFly6cC739_N2Df4uHcS3N9P7RPIyZmKqrZyNWuVAG89oNvo0t_3HgNzG7lr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67864841</pqid></control><display><type>article</type><title>Lateral Phase Separation in Lipid-Coated Microbubbles</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Borden, Mark A ; Martinez, Gary V ; Ricker, Josette ; Tsvetkova, Nelly ; Longo, Marjorie ; Gillies, Robert J ; Dayton, Paul A ; Ferrara, Katherine W</creator><creatorcontrib>Borden, Mark A ; Martinez, Gary V ; Ricker, Josette ; Tsvetkova, Nelly ; Longo, Marjorie ; Gillies, Robert J ; Dayton, Paul A ; Ferrara, Katherine W</creatorcontrib><description>In the design of lipid-coated microbubble ultrasound contrast agents for molecular imaging and targeted drug delivery, the surface distribution of the shell species is important because it dictates such properties as ligand location, brush coverage, and amount of drug loading. We used a combination of spectroscopy and microscopy techniques to test the prevailing notion that the main phosphatidyl choline (PC) and lipopolymer species are completely miscible within the monolayer shell. NMR spectroscopy showed that the shell composition is roughly equivalent to the bulk lipid ratio. FTIR spectroscopy showed a sharp melting peak corresponding to the main phase-transition temperature of the main PC species, with no observed pretransitions while scanning from room temperature, indicating a single PC-rich ordered phase. Electron and fluorescence microscopy showed a heterogeneous microstructure with dark (ordered) domains and bright (disordered) regions. Domain formation was thermotropic and reversible. Fluorescent labeling of the lipopolymer following shell formation showed that it partitions preferentially into the disordered interdomain regions. The ordered domains, therefore, are composed primarily of PC, and the disordered interdomain regions are enriched in lipopolymer. Phase heterogeneity was observed at all lipopolymer concentrations (0.5 to 20 mol %), and the degree of phase separation increased with lipopolymer content. The composition and temperature dependence of the microstructure indicates that phase separation is driven thermodynamically rather than being a kinetically trapped relic of the shell-formation process. The overall high variation in microstructure, including the existence of anomalous three-phase coexistence, highlights the nonequilibrium (history-dependent) nature of the monolayer shell.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la052841v</identifier><identifier>PMID: 16618177</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Coated Materials, Biocompatible - chemistry ; Contrast Media ; Exact sciences and technology ; Freeze Fracturing ; General and physical chemistry ; Lipid Bilayers - chemistry ; Magnetic Resonance Spectroscopy ; Materials Testing ; Microbubbles ; Microscopy, Electron ; Microscopy, Fluorescence ; Spectroscopy, Fourier Transform Infrared ; Thermodynamics ; Ultrasonics</subject><ispartof>Langmuir, 2006-04, Vol.22 (9), p.4291-4297</ispartof><rights>Copyright © 2006 American Chemical Society</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-bbb0548c9d9a1bbddca336f32b11e7fcfbb5042e15bdbb14b64ff3b2510db5a83</citedby><cites>FETCH-LOGICAL-a479t-bbb0548c9d9a1bbddca336f32b11e7fcfbb5042e15bdbb14b64ff3b2510db5a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la052841v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la052841v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17708066$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16618177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borden, Mark A</creatorcontrib><creatorcontrib>Martinez, Gary V</creatorcontrib><creatorcontrib>Ricker, Josette</creatorcontrib><creatorcontrib>Tsvetkova, Nelly</creatorcontrib><creatorcontrib>Longo, Marjorie</creatorcontrib><creatorcontrib>Gillies, Robert J</creatorcontrib><creatorcontrib>Dayton, Paul A</creatorcontrib><creatorcontrib>Ferrara, Katherine W</creatorcontrib><title>Lateral Phase Separation in Lipid-Coated Microbubbles</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>In the design of lipid-coated microbubble ultrasound contrast agents for molecular imaging and targeted drug delivery, the surface distribution of the shell species is important because it dictates such properties as ligand location, brush coverage, and amount of drug loading. We used a combination of spectroscopy and microscopy techniques to test the prevailing notion that the main phosphatidyl choline (PC) and lipopolymer species are completely miscible within the monolayer shell. NMR spectroscopy showed that the shell composition is roughly equivalent to the bulk lipid ratio. FTIR spectroscopy showed a sharp melting peak corresponding to the main phase-transition temperature of the main PC species, with no observed pretransitions while scanning from room temperature, indicating a single PC-rich ordered phase. Electron and fluorescence microscopy showed a heterogeneous microstructure with dark (ordered) domains and bright (disordered) regions. Domain formation was thermotropic and reversible. Fluorescent labeling of the lipopolymer following shell formation showed that it partitions preferentially into the disordered interdomain regions. The ordered domains, therefore, are composed primarily of PC, and the disordered interdomain regions are enriched in lipopolymer. Phase heterogeneity was observed at all lipopolymer concentrations (0.5 to 20 mol %), and the degree of phase separation increased with lipopolymer content. The composition and temperature dependence of the microstructure indicates that phase separation is driven thermodynamically rather than being a kinetically trapped relic of the shell-formation process. The overall high variation in microstructure, including the existence of anomalous three-phase coexistence, highlights the nonequilibrium (history-dependent) nature of the monolayer shell.</description><subject>Chemistry</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Contrast Media</subject><subject>Exact sciences and technology</subject><subject>Freeze Fracturing</subject><subject>General and physical chemistry</subject><subject>Lipid Bilayers - chemistry</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Materials Testing</subject><subject>Microbubbles</subject><subject>Microscopy, Electron</subject><subject>Microscopy, Fluorescence</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Thermodynamics</subject><subject>Ultrasonics</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E1LxDAQBuAgiq4fB_-A9KLioZo0X-1RFr9gRdEVvIWZNsVot12TVvTfG9nFvYinOczDy8xLyD6jp4xm7KwBKrNcsI81MmIyo6nMM71ORlQLnmqh-BbZDuGVUlpwUWySLaYUy5nWIyIn0FsPTXL_AsEmj3YOHnrXtYlrk4mbuyodd5FUya0rfYcDYmPDLtmooQl2bzl3yNPlxXR8nU7urm7G55MUhC76FBGpFHlZVAUwxKoqgXNV8wwZs7oua0RJRWaZxAqRCVSirjlmktEKJeR8hxwvcue-ex9s6M3MhdI2DbS2G4LRUsj4HuVRHv0rlc6ViBVFeLKA8ZsQvK3N3LsZ-C_DqPlp0_y2Ge3BMnTAma1WcllfBIdLAKGEpvbQli6snNY0p0pFly6cC739_N2Df4uHcS3N9P7RPIyZmKqrZyNWuVAG89oNvo0t_3HgNzG7lr8</recordid><startdate>20060425</startdate><enddate>20060425</enddate><creator>Borden, Mark A</creator><creator>Martinez, Gary V</creator><creator>Ricker, Josette</creator><creator>Tsvetkova, Nelly</creator><creator>Longo, Marjorie</creator><creator>Gillies, Robert J</creator><creator>Dayton, Paul A</creator><creator>Ferrara, Katherine W</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20060425</creationdate><title>Lateral Phase Separation in Lipid-Coated Microbubbles</title><author>Borden, Mark A ; Martinez, Gary V ; Ricker, Josette ; Tsvetkova, Nelly ; Longo, Marjorie ; Gillies, Robert J ; Dayton, Paul A ; Ferrara, Katherine W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-bbb0548c9d9a1bbddca336f32b11e7fcfbb5042e15bdbb14b64ff3b2510db5a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Chemistry</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Contrast Media</topic><topic>Exact sciences and technology</topic><topic>Freeze Fracturing</topic><topic>General and physical chemistry</topic><topic>Lipid Bilayers - chemistry</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Materials Testing</topic><topic>Microbubbles</topic><topic>Microscopy, Electron</topic><topic>Microscopy, Fluorescence</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Thermodynamics</topic><topic>Ultrasonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borden, Mark A</creatorcontrib><creatorcontrib>Martinez, Gary V</creatorcontrib><creatorcontrib>Ricker, Josette</creatorcontrib><creatorcontrib>Tsvetkova, Nelly</creatorcontrib><creatorcontrib>Longo, Marjorie</creatorcontrib><creatorcontrib>Gillies, Robert J</creatorcontrib><creatorcontrib>Dayton, Paul A</creatorcontrib><creatorcontrib>Ferrara, Katherine W</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borden, Mark A</au><au>Martinez, Gary V</au><au>Ricker, Josette</au><au>Tsvetkova, Nelly</au><au>Longo, Marjorie</au><au>Gillies, Robert J</au><au>Dayton, Paul A</au><au>Ferrara, Katherine W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lateral Phase Separation in Lipid-Coated Microbubbles</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2006-04-25</date><risdate>2006</risdate><volume>22</volume><issue>9</issue><spage>4291</spage><epage>4297</epage><pages>4291-4297</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>In the design of lipid-coated microbubble ultrasound contrast agents for molecular imaging and targeted drug delivery, the surface distribution of the shell species is important because it dictates such properties as ligand location, brush coverage, and amount of drug loading. We used a combination of spectroscopy and microscopy techniques to test the prevailing notion that the main phosphatidyl choline (PC) and lipopolymer species are completely miscible within the monolayer shell. NMR spectroscopy showed that the shell composition is roughly equivalent to the bulk lipid ratio. FTIR spectroscopy showed a sharp melting peak corresponding to the main phase-transition temperature of the main PC species, with no observed pretransitions while scanning from room temperature, indicating a single PC-rich ordered phase. Electron and fluorescence microscopy showed a heterogeneous microstructure with dark (ordered) domains and bright (disordered) regions. Domain formation was thermotropic and reversible. Fluorescent labeling of the lipopolymer following shell formation showed that it partitions preferentially into the disordered interdomain regions. The ordered domains, therefore, are composed primarily of PC, and the disordered interdomain regions are enriched in lipopolymer. Phase heterogeneity was observed at all lipopolymer concentrations (0.5 to 20 mol %), and the degree of phase separation increased with lipopolymer content. The composition and temperature dependence of the microstructure indicates that phase separation is driven thermodynamically rather than being a kinetically trapped relic of the shell-formation process. The overall high variation in microstructure, including the existence of anomalous three-phase coexistence, highlights the nonequilibrium (history-dependent) nature of the monolayer shell.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16618177</pmid><doi>10.1021/la052841v</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2006-04, Vol.22 (9), p.4291-4297 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_754546303 |
source | MEDLINE; American Chemical Society Journals |
subjects | Chemistry Coated Materials, Biocompatible - chemistry Contrast Media Exact sciences and technology Freeze Fracturing General and physical chemistry Lipid Bilayers - chemistry Magnetic Resonance Spectroscopy Materials Testing Microbubbles Microscopy, Electron Microscopy, Fluorescence Spectroscopy, Fourier Transform Infrared Thermodynamics Ultrasonics |
title | Lateral Phase Separation in Lipid-Coated Microbubbles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lateral%20Phase%20Separation%20in%20Lipid-Coated%20Microbubbles&rft.jtitle=Langmuir&rft.au=Borden,%20Mark%20A&rft.date=2006-04-25&rft.volume=22&rft.issue=9&rft.spage=4291&rft.epage=4297&rft.pages=4291-4297&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la052841v&rft_dat=%3Cproquest_cross%3E67864841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67864841&rft_id=info:pmid/16618177&rfr_iscdi=true |