Lateral Phase Separation in Lipid-Coated Microbubbles

In the design of lipid-coated microbubble ultrasound contrast agents for molecular imaging and targeted drug delivery, the surface distribution of the shell species is important because it dictates such properties as ligand location, brush coverage, and amount of drug loading. We used a combination...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2006-04, Vol.22 (9), p.4291-4297
Hauptverfasser: Borden, Mark A, Martinez, Gary V, Ricker, Josette, Tsvetkova, Nelly, Longo, Marjorie, Gillies, Robert J, Dayton, Paul A, Ferrara, Katherine W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4297
container_issue 9
container_start_page 4291
container_title Langmuir
container_volume 22
creator Borden, Mark A
Martinez, Gary V
Ricker, Josette
Tsvetkova, Nelly
Longo, Marjorie
Gillies, Robert J
Dayton, Paul A
Ferrara, Katherine W
description In the design of lipid-coated microbubble ultrasound contrast agents for molecular imaging and targeted drug delivery, the surface distribution of the shell species is important because it dictates such properties as ligand location, brush coverage, and amount of drug loading. We used a combination of spectroscopy and microscopy techniques to test the prevailing notion that the main phosphatidyl choline (PC) and lipopolymer species are completely miscible within the monolayer shell. NMR spectroscopy showed that the shell composition is roughly equivalent to the bulk lipid ratio. FTIR spectroscopy showed a sharp melting peak corresponding to the main phase-transition temperature of the main PC species, with no observed pretransitions while scanning from room temperature, indicating a single PC-rich ordered phase. Electron and fluorescence microscopy showed a heterogeneous microstructure with dark (ordered) domains and bright (disordered) regions. Domain formation was thermotropic and reversible. Fluorescent labeling of the lipopolymer following shell formation showed that it partitions preferentially into the disordered interdomain regions. The ordered domains, therefore, are composed primarily of PC, and the disordered interdomain regions are enriched in lipopolymer. Phase heterogeneity was observed at all lipopolymer concentrations (0.5 to 20 mol %), and the degree of phase separation increased with lipopolymer content. The composition and temperature dependence of the microstructure indicates that phase separation is driven thermodynamically rather than being a kinetically trapped relic of the shell-formation process. The overall high variation in microstructure, including the existence of anomalous three-phase coexistence, highlights the nonequilibrium (history-dependent) nature of the monolayer shell.
doi_str_mv 10.1021/la052841v
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754546303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67864841</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-bbb0548c9d9a1bbddca336f32b11e7fcfbb5042e15bdbb14b64ff3b2510db5a83</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgiq4fB_-A9KLioZo0X-1RFr9gRdEVvIWZNsVot12TVvTfG9nFvYinOczDy8xLyD6jp4xm7KwBKrNcsI81MmIyo6nMM71ORlQLnmqh-BbZDuGVUlpwUWySLaYUy5nWIyIn0FsPTXL_AsEmj3YOHnrXtYlrk4mbuyodd5FUya0rfYcDYmPDLtmooQl2bzl3yNPlxXR8nU7urm7G55MUhC76FBGpFHlZVAUwxKoqgXNV8wwZs7oua0RJRWaZxAqRCVSirjlmktEKJeR8hxwvcue-ex9s6M3MhdI2DbS2G4LRUsj4HuVRHv0rlc6ViBVFeLKA8ZsQvK3N3LsZ-C_DqPlp0_y2Ge3BMnTAma1WcllfBIdLAKGEpvbQli6snNY0p0pFly6cC739_N2Df4uHcS3N9P7RPIyZmKqrZyNWuVAG89oNvo0t_3HgNzG7lr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67864841</pqid></control><display><type>article</type><title>Lateral Phase Separation in Lipid-Coated Microbubbles</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Borden, Mark A ; Martinez, Gary V ; Ricker, Josette ; Tsvetkova, Nelly ; Longo, Marjorie ; Gillies, Robert J ; Dayton, Paul A ; Ferrara, Katherine W</creator><creatorcontrib>Borden, Mark A ; Martinez, Gary V ; Ricker, Josette ; Tsvetkova, Nelly ; Longo, Marjorie ; Gillies, Robert J ; Dayton, Paul A ; Ferrara, Katherine W</creatorcontrib><description>In the design of lipid-coated microbubble ultrasound contrast agents for molecular imaging and targeted drug delivery, the surface distribution of the shell species is important because it dictates such properties as ligand location, brush coverage, and amount of drug loading. We used a combination of spectroscopy and microscopy techniques to test the prevailing notion that the main phosphatidyl choline (PC) and lipopolymer species are completely miscible within the monolayer shell. NMR spectroscopy showed that the shell composition is roughly equivalent to the bulk lipid ratio. FTIR spectroscopy showed a sharp melting peak corresponding to the main phase-transition temperature of the main PC species, with no observed pretransitions while scanning from room temperature, indicating a single PC-rich ordered phase. Electron and fluorescence microscopy showed a heterogeneous microstructure with dark (ordered) domains and bright (disordered) regions. Domain formation was thermotropic and reversible. Fluorescent labeling of the lipopolymer following shell formation showed that it partitions preferentially into the disordered interdomain regions. The ordered domains, therefore, are composed primarily of PC, and the disordered interdomain regions are enriched in lipopolymer. Phase heterogeneity was observed at all lipopolymer concentrations (0.5 to 20 mol %), and the degree of phase separation increased with lipopolymer content. The composition and temperature dependence of the microstructure indicates that phase separation is driven thermodynamically rather than being a kinetically trapped relic of the shell-formation process. The overall high variation in microstructure, including the existence of anomalous three-phase coexistence, highlights the nonequilibrium (history-dependent) nature of the monolayer shell.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la052841v</identifier><identifier>PMID: 16618177</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Coated Materials, Biocompatible - chemistry ; Contrast Media ; Exact sciences and technology ; Freeze Fracturing ; General and physical chemistry ; Lipid Bilayers - chemistry ; Magnetic Resonance Spectroscopy ; Materials Testing ; Microbubbles ; Microscopy, Electron ; Microscopy, Fluorescence ; Spectroscopy, Fourier Transform Infrared ; Thermodynamics ; Ultrasonics</subject><ispartof>Langmuir, 2006-04, Vol.22 (9), p.4291-4297</ispartof><rights>Copyright © 2006 American Chemical Society</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-bbb0548c9d9a1bbddca336f32b11e7fcfbb5042e15bdbb14b64ff3b2510db5a83</citedby><cites>FETCH-LOGICAL-a479t-bbb0548c9d9a1bbddca336f32b11e7fcfbb5042e15bdbb14b64ff3b2510db5a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la052841v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la052841v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17708066$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16618177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borden, Mark A</creatorcontrib><creatorcontrib>Martinez, Gary V</creatorcontrib><creatorcontrib>Ricker, Josette</creatorcontrib><creatorcontrib>Tsvetkova, Nelly</creatorcontrib><creatorcontrib>Longo, Marjorie</creatorcontrib><creatorcontrib>Gillies, Robert J</creatorcontrib><creatorcontrib>Dayton, Paul A</creatorcontrib><creatorcontrib>Ferrara, Katherine W</creatorcontrib><title>Lateral Phase Separation in Lipid-Coated Microbubbles</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>In the design of lipid-coated microbubble ultrasound contrast agents for molecular imaging and targeted drug delivery, the surface distribution of the shell species is important because it dictates such properties as ligand location, brush coverage, and amount of drug loading. We used a combination of spectroscopy and microscopy techniques to test the prevailing notion that the main phosphatidyl choline (PC) and lipopolymer species are completely miscible within the monolayer shell. NMR spectroscopy showed that the shell composition is roughly equivalent to the bulk lipid ratio. FTIR spectroscopy showed a sharp melting peak corresponding to the main phase-transition temperature of the main PC species, with no observed pretransitions while scanning from room temperature, indicating a single PC-rich ordered phase. Electron and fluorescence microscopy showed a heterogeneous microstructure with dark (ordered) domains and bright (disordered) regions. Domain formation was thermotropic and reversible. Fluorescent labeling of the lipopolymer following shell formation showed that it partitions preferentially into the disordered interdomain regions. The ordered domains, therefore, are composed primarily of PC, and the disordered interdomain regions are enriched in lipopolymer. Phase heterogeneity was observed at all lipopolymer concentrations (0.5 to 20 mol %), and the degree of phase separation increased with lipopolymer content. The composition and temperature dependence of the microstructure indicates that phase separation is driven thermodynamically rather than being a kinetically trapped relic of the shell-formation process. The overall high variation in microstructure, including the existence of anomalous three-phase coexistence, highlights the nonequilibrium (history-dependent) nature of the monolayer shell.</description><subject>Chemistry</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Contrast Media</subject><subject>Exact sciences and technology</subject><subject>Freeze Fracturing</subject><subject>General and physical chemistry</subject><subject>Lipid Bilayers - chemistry</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Materials Testing</subject><subject>Microbubbles</subject><subject>Microscopy, Electron</subject><subject>Microscopy, Fluorescence</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Thermodynamics</subject><subject>Ultrasonics</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E1LxDAQBuAgiq4fB_-A9KLioZo0X-1RFr9gRdEVvIWZNsVot12TVvTfG9nFvYinOczDy8xLyD6jp4xm7KwBKrNcsI81MmIyo6nMM71ORlQLnmqh-BbZDuGVUlpwUWySLaYUy5nWIyIn0FsPTXL_AsEmj3YOHnrXtYlrk4mbuyodd5FUya0rfYcDYmPDLtmooQl2bzl3yNPlxXR8nU7urm7G55MUhC76FBGpFHlZVAUwxKoqgXNV8wwZs7oua0RJRWaZxAqRCVSirjlmktEKJeR8hxwvcue-ex9s6M3MhdI2DbS2G4LRUsj4HuVRHv0rlc6ViBVFeLKA8ZsQvK3N3LsZ-C_DqPlp0_y2Ge3BMnTAma1WcllfBIdLAKGEpvbQli6snNY0p0pFly6cC739_N2Df4uHcS3N9P7RPIyZmKqrZyNWuVAG89oNvo0t_3HgNzG7lr8</recordid><startdate>20060425</startdate><enddate>20060425</enddate><creator>Borden, Mark A</creator><creator>Martinez, Gary V</creator><creator>Ricker, Josette</creator><creator>Tsvetkova, Nelly</creator><creator>Longo, Marjorie</creator><creator>Gillies, Robert J</creator><creator>Dayton, Paul A</creator><creator>Ferrara, Katherine W</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20060425</creationdate><title>Lateral Phase Separation in Lipid-Coated Microbubbles</title><author>Borden, Mark A ; Martinez, Gary V ; Ricker, Josette ; Tsvetkova, Nelly ; Longo, Marjorie ; Gillies, Robert J ; Dayton, Paul A ; Ferrara, Katherine W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-bbb0548c9d9a1bbddca336f32b11e7fcfbb5042e15bdbb14b64ff3b2510db5a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Chemistry</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Contrast Media</topic><topic>Exact sciences and technology</topic><topic>Freeze Fracturing</topic><topic>General and physical chemistry</topic><topic>Lipid Bilayers - chemistry</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Materials Testing</topic><topic>Microbubbles</topic><topic>Microscopy, Electron</topic><topic>Microscopy, Fluorescence</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Thermodynamics</topic><topic>Ultrasonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borden, Mark A</creatorcontrib><creatorcontrib>Martinez, Gary V</creatorcontrib><creatorcontrib>Ricker, Josette</creatorcontrib><creatorcontrib>Tsvetkova, Nelly</creatorcontrib><creatorcontrib>Longo, Marjorie</creatorcontrib><creatorcontrib>Gillies, Robert J</creatorcontrib><creatorcontrib>Dayton, Paul A</creatorcontrib><creatorcontrib>Ferrara, Katherine W</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borden, Mark A</au><au>Martinez, Gary V</au><au>Ricker, Josette</au><au>Tsvetkova, Nelly</au><au>Longo, Marjorie</au><au>Gillies, Robert J</au><au>Dayton, Paul A</au><au>Ferrara, Katherine W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lateral Phase Separation in Lipid-Coated Microbubbles</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2006-04-25</date><risdate>2006</risdate><volume>22</volume><issue>9</issue><spage>4291</spage><epage>4297</epage><pages>4291-4297</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>In the design of lipid-coated microbubble ultrasound contrast agents for molecular imaging and targeted drug delivery, the surface distribution of the shell species is important because it dictates such properties as ligand location, brush coverage, and amount of drug loading. We used a combination of spectroscopy and microscopy techniques to test the prevailing notion that the main phosphatidyl choline (PC) and lipopolymer species are completely miscible within the monolayer shell. NMR spectroscopy showed that the shell composition is roughly equivalent to the bulk lipid ratio. FTIR spectroscopy showed a sharp melting peak corresponding to the main phase-transition temperature of the main PC species, with no observed pretransitions while scanning from room temperature, indicating a single PC-rich ordered phase. Electron and fluorescence microscopy showed a heterogeneous microstructure with dark (ordered) domains and bright (disordered) regions. Domain formation was thermotropic and reversible. Fluorescent labeling of the lipopolymer following shell formation showed that it partitions preferentially into the disordered interdomain regions. The ordered domains, therefore, are composed primarily of PC, and the disordered interdomain regions are enriched in lipopolymer. Phase heterogeneity was observed at all lipopolymer concentrations (0.5 to 20 mol %), and the degree of phase separation increased with lipopolymer content. The composition and temperature dependence of the microstructure indicates that phase separation is driven thermodynamically rather than being a kinetically trapped relic of the shell-formation process. The overall high variation in microstructure, including the existence of anomalous three-phase coexistence, highlights the nonequilibrium (history-dependent) nature of the monolayer shell.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16618177</pmid><doi>10.1021/la052841v</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2006-04, Vol.22 (9), p.4291-4297
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_754546303
source MEDLINE; American Chemical Society Journals
subjects Chemistry
Coated Materials, Biocompatible - chemistry
Contrast Media
Exact sciences and technology
Freeze Fracturing
General and physical chemistry
Lipid Bilayers - chemistry
Magnetic Resonance Spectroscopy
Materials Testing
Microbubbles
Microscopy, Electron
Microscopy, Fluorescence
Spectroscopy, Fourier Transform Infrared
Thermodynamics
Ultrasonics
title Lateral Phase Separation in Lipid-Coated Microbubbles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lateral%20Phase%20Separation%20in%20Lipid-Coated%20Microbubbles&rft.jtitle=Langmuir&rft.au=Borden,%20Mark%20A&rft.date=2006-04-25&rft.volume=22&rft.issue=9&rft.spage=4291&rft.epage=4297&rft.pages=4291-4297&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la052841v&rft_dat=%3Cproquest_cross%3E67864841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67864841&rft_id=info:pmid/16618177&rfr_iscdi=true