Interfacial Assembly of Turnip Yellow Mosaic Virus Nanoparticles
An extensive study of the factors that affect the interfacial assembly of bionanoparticles at the oil/water (O/W) interface is reported. Bionanoparticles, such as viruses, have distinctive structural properties due to the unique arrangement of their protein structures. The assembly process of such b...
Gespeichert in:
Veröffentlicht in: | Langmuir 2009-05, Vol.25 (9), p.5168-5176 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5176 |
---|---|
container_issue | 9 |
container_start_page | 5168 |
container_title | Langmuir |
container_volume | 25 |
creator | Kaur, Gagandeep He, Jinbo Xu, Ji Pingali, Sai Jutz, Günther Böker, Alexander Niu, Zhongwei Li, Tao Rawlinson, Dustin Emrick, Todd Lee, Byeongdu Thiyagarajan, Pappannan Russell, Thomas P Wang, Qian |
description | An extensive study of the factors that affect the interfacial assembly of bionanoparticles at the oil/water (O/W) interface is reported. Bionanoparticles, such as viruses, have distinctive structural properties due to the unique arrangement of their protein structures. The assembly process of such bionanoparticles at interfaces is governed by factors including the ionic strength and pH of the aqueous layer, concentration of the particles, and nature of the oil phase. This study highlights the impact of these factors on the interfacial assembly of bionanoparticles at the O/W interface using native turnip yellow mosaic virus (TYMV) as the prototype. Robust monolayer assemblies of TYMV were produced by self-assembly at the O/W interface using emulsions and planar interfaces. TYMV maintained its structure and integrity under different assembly conditions. For the emulsion droplets, they were fully covered with TYMV as evidenced by transmission electron microscopy (TEM) and scanning force microscopy (SFM). Tensiometry and small-angle neutron scattering (SANS) further supported this finding. Although the emulsions offered a complete coverage by TYMV particles, they lacked long-range ordering due to rapid exchange at the interface. By altering the assembly process, highly ordered, hexagonal arrays of TYMV were obtained at planar O/W interfaces. The pH, ionic strength, and viscosity of the solution played a crucial role in enhancing the lateral ordering of TYMV assembled at the planar O/W interface. This interfacial ordering of TYMV particles was further stabilized by introduction of a positively charged dehydroabietyl amine (DHAA) in the organic phase which held the assembly together by electrostatic interactions. The long-range array formation was observed using TEM and SFM. The results presented here illustrate that the interfacial assembly at the O/W interface is a versatile approach to achieve highly stable self-assembled structures. |
doi_str_mv | 10.1021/la900167s |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754545613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67173439</sourcerecordid><originalsourceid>FETCH-LOGICAL-a441t-264eb22c6e8000d8b4f4d390df71474ed4017b2e46424b9a97063529d81456ad3</originalsourceid><addsrcrecordid>eNp90E1LxDAQgOEgirt-HPwD0ouKh2ommSbNTVn8WFj1ooKnkqYpVLrtmtki_nsju7gXkRxyeZgZXsaOgF8AF3DZWsM5KE1bbAyZ4GmWC73NxlyjTDUqOWJ7RO-ccyPR7LIRGJmhAD1mV9Nu6UNtXWPb5JrIz8v2K-nr5HkIXbNI3nzb9p_JQ0-2cclrEwZKHm3XL2xYNq71dMB2atuSP1z_--zl9uZ5cp_Onu6mk-tZahFhmQqFvhTCKZ_HM6q8xBoraXhVa0CNvkIOuhQeFQosjTWaK5kJU-WAmbKV3Gdnq7mL0H8MnpbFvCEXr7Od7wcqdIbxKZBRnv4rlQYtUZoIz1fQhZ4o-LpYhGZuw1cBvPgJW_yGjfZ4PXQo577ayHXJCE7WwJKzbR1s5xr6dQIQNPB846yj4r2PlWO1PxZ-A1fUie4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67173439</pqid></control><display><type>article</type><title>Interfacial Assembly of Turnip Yellow Mosaic Virus Nanoparticles</title><source>MEDLINE</source><source>ACS Publications</source><creator>Kaur, Gagandeep ; He, Jinbo ; Xu, Ji ; Pingali, Sai ; Jutz, Günther ; Böker, Alexander ; Niu, Zhongwei ; Li, Tao ; Rawlinson, Dustin ; Emrick, Todd ; Lee, Byeongdu ; Thiyagarajan, Pappannan ; Russell, Thomas P ; Wang, Qian</creator><creatorcontrib>Kaur, Gagandeep ; He, Jinbo ; Xu, Ji ; Pingali, Sai ; Jutz, Günther ; Böker, Alexander ; Niu, Zhongwei ; Li, Tao ; Rawlinson, Dustin ; Emrick, Todd ; Lee, Byeongdu ; Thiyagarajan, Pappannan ; Russell, Thomas P ; Wang, Qian</creatorcontrib><description>An extensive study of the factors that affect the interfacial assembly of bionanoparticles at the oil/water (O/W) interface is reported. Bionanoparticles, such as viruses, have distinctive structural properties due to the unique arrangement of their protein structures. The assembly process of such bionanoparticles at interfaces is governed by factors including the ionic strength and pH of the aqueous layer, concentration of the particles, and nature of the oil phase. This study highlights the impact of these factors on the interfacial assembly of bionanoparticles at the O/W interface using native turnip yellow mosaic virus (TYMV) as the prototype. Robust monolayer assemblies of TYMV were produced by self-assembly at the O/W interface using emulsions and planar interfaces. TYMV maintained its structure and integrity under different assembly conditions. For the emulsion droplets, they were fully covered with TYMV as evidenced by transmission electron microscopy (TEM) and scanning force microscopy (SFM). Tensiometry and small-angle neutron scattering (SANS) further supported this finding. Although the emulsions offered a complete coverage by TYMV particles, they lacked long-range ordering due to rapid exchange at the interface. By altering the assembly process, highly ordered, hexagonal arrays of TYMV were obtained at planar O/W interfaces. The pH, ionic strength, and viscosity of the solution played a crucial role in enhancing the lateral ordering of TYMV assembled at the planar O/W interface. This interfacial ordering of TYMV particles was further stabilized by introduction of a positively charged dehydroabietyl amine (DHAA) in the organic phase which held the assembly together by electrostatic interactions. The long-range array formation was observed using TEM and SFM. The results presented here illustrate that the interfacial assembly at the O/W interface is a versatile approach to achieve highly stable self-assembled structures.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la900167s</identifier><identifier>PMID: 19354217</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Biological Interfaces: Biocolloids, Biomolecular and Biomimetic Materials ; Chemistry ; Colloidal state and disperse state ; Emulsions ; Exact sciences and technology ; General and physical chemistry ; Microscopy, Electron, Transmission ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; Oils - chemistry ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Surface physical chemistry ; Turnip yellow mosaic virus ; Tymovirus - chemistry ; Tymovirus - ultrastructure ; Virus Assembly ; Water - chemistry</subject><ispartof>Langmuir, 2009-05, Vol.25 (9), p.5168-5176</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a441t-264eb22c6e8000d8b4f4d390df71474ed4017b2e46424b9a97063529d81456ad3</citedby><cites>FETCH-LOGICAL-a441t-264eb22c6e8000d8b4f4d390df71474ed4017b2e46424b9a97063529d81456ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la900167s$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la900167s$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21417108$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19354217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaur, Gagandeep</creatorcontrib><creatorcontrib>He, Jinbo</creatorcontrib><creatorcontrib>Xu, Ji</creatorcontrib><creatorcontrib>Pingali, Sai</creatorcontrib><creatorcontrib>Jutz, Günther</creatorcontrib><creatorcontrib>Böker, Alexander</creatorcontrib><creatorcontrib>Niu, Zhongwei</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Rawlinson, Dustin</creatorcontrib><creatorcontrib>Emrick, Todd</creatorcontrib><creatorcontrib>Lee, Byeongdu</creatorcontrib><creatorcontrib>Thiyagarajan, Pappannan</creatorcontrib><creatorcontrib>Russell, Thomas P</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><title>Interfacial Assembly of Turnip Yellow Mosaic Virus Nanoparticles</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>An extensive study of the factors that affect the interfacial assembly of bionanoparticles at the oil/water (O/W) interface is reported. Bionanoparticles, such as viruses, have distinctive structural properties due to the unique arrangement of their protein structures. The assembly process of such bionanoparticles at interfaces is governed by factors including the ionic strength and pH of the aqueous layer, concentration of the particles, and nature of the oil phase. This study highlights the impact of these factors on the interfacial assembly of bionanoparticles at the O/W interface using native turnip yellow mosaic virus (TYMV) as the prototype. Robust monolayer assemblies of TYMV were produced by self-assembly at the O/W interface using emulsions and planar interfaces. TYMV maintained its structure and integrity under different assembly conditions. For the emulsion droplets, they were fully covered with TYMV as evidenced by transmission electron microscopy (TEM) and scanning force microscopy (SFM). Tensiometry and small-angle neutron scattering (SANS) further supported this finding. Although the emulsions offered a complete coverage by TYMV particles, they lacked long-range ordering due to rapid exchange at the interface. By altering the assembly process, highly ordered, hexagonal arrays of TYMV were obtained at planar O/W interfaces. The pH, ionic strength, and viscosity of the solution played a crucial role in enhancing the lateral ordering of TYMV assembled at the planar O/W interface. This interfacial ordering of TYMV particles was further stabilized by introduction of a positively charged dehydroabietyl amine (DHAA) in the organic phase which held the assembly together by electrostatic interactions. The long-range array formation was observed using TEM and SFM. The results presented here illustrate that the interfacial assembly at the O/W interface is a versatile approach to achieve highly stable self-assembled structures.</description><subject>Biological Interfaces: Biocolloids, Biomolecular and Biomimetic Materials</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Emulsions</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>Oils - chemistry</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Surface physical chemistry</subject><subject>Turnip yellow mosaic virus</subject><subject>Tymovirus - chemistry</subject><subject>Tymovirus - ultrastructure</subject><subject>Virus Assembly</subject><subject>Water - chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E1LxDAQgOEgirt-HPwD0ouKh2ommSbNTVn8WFj1ooKnkqYpVLrtmtki_nsju7gXkRxyeZgZXsaOgF8AF3DZWsM5KE1bbAyZ4GmWC73NxlyjTDUqOWJ7RO-ccyPR7LIRGJmhAD1mV9Nu6UNtXWPb5JrIz8v2K-nr5HkIXbNI3nzb9p_JQ0-2cclrEwZKHm3XL2xYNq71dMB2atuSP1z_--zl9uZ5cp_Onu6mk-tZahFhmQqFvhTCKZ_HM6q8xBoraXhVa0CNvkIOuhQeFQosjTWaK5kJU-WAmbKV3Gdnq7mL0H8MnpbFvCEXr7Od7wcqdIbxKZBRnv4rlQYtUZoIz1fQhZ4o-LpYhGZuw1cBvPgJW_yGjfZ4PXQo577ayHXJCE7WwJKzbR1s5xr6dQIQNPB846yj4r2PlWO1PxZ-A1fUie4</recordid><startdate>20090505</startdate><enddate>20090505</enddate><creator>Kaur, Gagandeep</creator><creator>He, Jinbo</creator><creator>Xu, Ji</creator><creator>Pingali, Sai</creator><creator>Jutz, Günther</creator><creator>Böker, Alexander</creator><creator>Niu, Zhongwei</creator><creator>Li, Tao</creator><creator>Rawlinson, Dustin</creator><creator>Emrick, Todd</creator><creator>Lee, Byeongdu</creator><creator>Thiyagarajan, Pappannan</creator><creator>Russell, Thomas P</creator><creator>Wang, Qian</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U9</scope><scope>H94</scope></search><sort><creationdate>20090505</creationdate><title>Interfacial Assembly of Turnip Yellow Mosaic Virus Nanoparticles</title><author>Kaur, Gagandeep ; He, Jinbo ; Xu, Ji ; Pingali, Sai ; Jutz, Günther ; Böker, Alexander ; Niu, Zhongwei ; Li, Tao ; Rawlinson, Dustin ; Emrick, Todd ; Lee, Byeongdu ; Thiyagarajan, Pappannan ; Russell, Thomas P ; Wang, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a441t-264eb22c6e8000d8b4f4d390df71474ed4017b2e46424b9a97063529d81456ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological Interfaces: Biocolloids, Biomolecular and Biomimetic Materials</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Emulsions</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>Oils - chemistry</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Surface physical chemistry</topic><topic>Turnip yellow mosaic virus</topic><topic>Tymovirus - chemistry</topic><topic>Tymovirus - ultrastructure</topic><topic>Virus Assembly</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaur, Gagandeep</creatorcontrib><creatorcontrib>He, Jinbo</creatorcontrib><creatorcontrib>Xu, Ji</creatorcontrib><creatorcontrib>Pingali, Sai</creatorcontrib><creatorcontrib>Jutz, Günther</creatorcontrib><creatorcontrib>Böker, Alexander</creatorcontrib><creatorcontrib>Niu, Zhongwei</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Rawlinson, Dustin</creatorcontrib><creatorcontrib>Emrick, Todd</creatorcontrib><creatorcontrib>Lee, Byeongdu</creatorcontrib><creatorcontrib>Thiyagarajan, Pappannan</creatorcontrib><creatorcontrib>Russell, Thomas P</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaur, Gagandeep</au><au>He, Jinbo</au><au>Xu, Ji</au><au>Pingali, Sai</au><au>Jutz, Günther</au><au>Böker, Alexander</au><au>Niu, Zhongwei</au><au>Li, Tao</au><au>Rawlinson, Dustin</au><au>Emrick, Todd</au><au>Lee, Byeongdu</au><au>Thiyagarajan, Pappannan</au><au>Russell, Thomas P</au><au>Wang, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial Assembly of Turnip Yellow Mosaic Virus Nanoparticles</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2009-05-05</date><risdate>2009</risdate><volume>25</volume><issue>9</issue><spage>5168</spage><epage>5176</epage><pages>5168-5176</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>An extensive study of the factors that affect the interfacial assembly of bionanoparticles at the oil/water (O/W) interface is reported. Bionanoparticles, such as viruses, have distinctive structural properties due to the unique arrangement of their protein structures. The assembly process of such bionanoparticles at interfaces is governed by factors including the ionic strength and pH of the aqueous layer, concentration of the particles, and nature of the oil phase. This study highlights the impact of these factors on the interfacial assembly of bionanoparticles at the O/W interface using native turnip yellow mosaic virus (TYMV) as the prototype. Robust monolayer assemblies of TYMV were produced by self-assembly at the O/W interface using emulsions and planar interfaces. TYMV maintained its structure and integrity under different assembly conditions. For the emulsion droplets, they were fully covered with TYMV as evidenced by transmission electron microscopy (TEM) and scanning force microscopy (SFM). Tensiometry and small-angle neutron scattering (SANS) further supported this finding. Although the emulsions offered a complete coverage by TYMV particles, they lacked long-range ordering due to rapid exchange at the interface. By altering the assembly process, highly ordered, hexagonal arrays of TYMV were obtained at planar O/W interfaces. The pH, ionic strength, and viscosity of the solution played a crucial role in enhancing the lateral ordering of TYMV assembled at the planar O/W interface. This interfacial ordering of TYMV particles was further stabilized by introduction of a positively charged dehydroabietyl amine (DHAA) in the organic phase which held the assembly together by electrostatic interactions. The long-range array formation was observed using TEM and SFM. The results presented here illustrate that the interfacial assembly at the O/W interface is a versatile approach to achieve highly stable self-assembled structures.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>19354217</pmid><doi>10.1021/la900167s</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2009-05, Vol.25 (9), p.5168-5176 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_754545613 |
source | MEDLINE; ACS Publications |
subjects | Biological Interfaces: Biocolloids, Biomolecular and Biomimetic Materials Chemistry Colloidal state and disperse state Emulsions Exact sciences and technology General and physical chemistry Microscopy, Electron, Transmission Nanoparticles - chemistry Nanoparticles - ultrastructure Oils - chemistry Physical and chemical studies. Granulometry. Electrokinetic phenomena Surface physical chemistry Turnip yellow mosaic virus Tymovirus - chemistry Tymovirus - ultrastructure Virus Assembly Water - chemistry |
title | Interfacial Assembly of Turnip Yellow Mosaic Virus Nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20Assembly%20of%20Turnip%20Yellow%20Mosaic%20Virus%20Nanoparticles&rft.jtitle=Langmuir&rft.au=Kaur,%20Gagandeep&rft.date=2009-05-05&rft.volume=25&rft.issue=9&rft.spage=5168&rft.epage=5176&rft.pages=5168-5176&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la900167s&rft_dat=%3Cproquest_cross%3E67173439%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67173439&rft_id=info:pmid/19354217&rfr_iscdi=true |