Microbial Architecture of Environmental Sulfur Processes: A Novel Syntrophic Sulfur-Metabolizing Consortia

Microbial oxidation of sulfur-rich mining waste materials drives acid mine drainage (AMD) and affects the global sulfur biogeochemical cycle. The generation of AMD is a complex, dynamic process that proceeds via multiple reaction pathways. The role of natural consortia of microbes in AMD generation,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2009-12, Vol.43 (23), p.8781-8786
Hauptverfasser: Norlund, Kelsey L.I, Southam, Gordon, Tyliszczak, Tolek, Hu, Yongfeng, Karunakaran, Chithra, Obst, Martin, Hitchcock, Adam P, Warren, Lesley A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8786
container_issue 23
container_start_page 8781
container_title Environmental science & technology
container_volume 43
creator Norlund, Kelsey L.I
Southam, Gordon
Tyliszczak, Tolek
Hu, Yongfeng
Karunakaran, Chithra
Obst, Martin
Hitchcock, Adam P
Warren, Lesley A
description Microbial oxidation of sulfur-rich mining waste materials drives acid mine drainage (AMD) and affects the global sulfur biogeochemical cycle. The generation of AMD is a complex, dynamic process that proceeds via multiple reaction pathways. The role of natural consortia of microbes in AMD generation, however, has received very little attention despite their widespread occurrence in mining environments. Through a combination of geochemical experimentation and modeling, scanning transmission X-ray microscopy, and fluorescent in situ hybridization, we show a novel interdependent metabolic arrangement of two ubiquitous and abundant AMD bacteria: chemoautotrophic sulfur-oxidizing Acidithiobacillus sp. and heterotrophic Acidiphilium sp. Highly reminiscent of anaerobic methane oxidation (AOM) consortia, these bacteria are spatially segregated within a planktonic macrostructure of extracellular polymeric substance in which they syntrophically couple sulfur oxidation and reduction reactions in a mutually beneficial arrangement that regenerates their respective sulfur substrates. As discussed here, the geochemical impacts of microbial metabolism are linked to the consortial organization and development of the pod structure, which affects cell−cell interactions and interactions with the surrounding geochemical microenvironment. If these pods are widespread in mine waters, echoing the now widespread discovery of AOM consortia, then AMD-driven CO2 atmospheric fluxes from H2SO4 carbonate weathering could be reduced by as much as 26 TgC/yr. This novel sulfur consortial discovery indicates that organized metabolically linked microbial partnerships are likely widespread and more significant in global elemental cycling than previously considered.
doi_str_mv 10.1021/es803616k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754544402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>754544402</sourcerecordid><originalsourceid>FETCH-LOGICAL-a469t-e74299aea42dbc8969395a5694a87615425d4057723719dc7b10ca8a22d197c53</originalsourceid><addsrcrecordid>eNqF0U1LHDEYB_BQLHXVHvoFZBCKeJia90m8LYsvBd9AC70Nz2Qymu1ssk1mBPvpjTi40B56yuH58U_yfxD6QvA3gik5tklhJon89QHNiKC4FEqQLTTDmLBSM_lzG-2ktMQYU4bVJ7RNtOZMcjlDyytnYmgc9MU8mkc3WDOM0RahK079k4vBr6wf8vRu7LsxFrcxGJuSTSfFvLgOTzZPnv0Qw_rRmQmVV3aAJvTuj_MPxSL4FOLgYA997KBP9vN07qIfZ6f3i4vy8ub8-2J-WQKXeihtxanWYIHTtjFKS820ACE1B1VJIjgVLceiqiiriG5N1RBsQAGlLdGVEWwXHb7lrmP4Pdo01CuXjO178DaMqa4EF5zz3MV_JeOUKUV4lgd_yWUYo8_fqHOlhHOpXuOO3lBuNKVou3od3Qric01w_bqo-n1R2e5PgWOzsu1GTpvJ4OsEIBnouwjeuPTuKCWK5aY2DkzaPOrfC18AclCl2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230144682</pqid></control><display><type>article</type><title>Microbial Architecture of Environmental Sulfur Processes: A Novel Syntrophic Sulfur-Metabolizing Consortia</title><source>ACS Publications</source><source>MEDLINE</source><creator>Norlund, Kelsey L.I ; Southam, Gordon ; Tyliszczak, Tolek ; Hu, Yongfeng ; Karunakaran, Chithra ; Obst, Martin ; Hitchcock, Adam P ; Warren, Lesley A</creator><creatorcontrib>Norlund, Kelsey L.I ; Southam, Gordon ; Tyliszczak, Tolek ; Hu, Yongfeng ; Karunakaran, Chithra ; Obst, Martin ; Hitchcock, Adam P ; Warren, Lesley A</creatorcontrib><description>Microbial oxidation of sulfur-rich mining waste materials drives acid mine drainage (AMD) and affects the global sulfur biogeochemical cycle. The generation of AMD is a complex, dynamic process that proceeds via multiple reaction pathways. The role of natural consortia of microbes in AMD generation, however, has received very little attention despite their widespread occurrence in mining environments. Through a combination of geochemical experimentation and modeling, scanning transmission X-ray microscopy, and fluorescent in situ hybridization, we show a novel interdependent metabolic arrangement of two ubiquitous and abundant AMD bacteria: chemoautotrophic sulfur-oxidizing Acidithiobacillus sp. and heterotrophic Acidiphilium sp. Highly reminiscent of anaerobic methane oxidation (AOM) consortia, these bacteria are spatially segregated within a planktonic macrostructure of extracellular polymeric substance in which they syntrophically couple sulfur oxidation and reduction reactions in a mutually beneficial arrangement that regenerates their respective sulfur substrates. As discussed here, the geochemical impacts of microbial metabolism are linked to the consortial organization and development of the pod structure, which affects cell−cell interactions and interactions with the surrounding geochemical microenvironment. If these pods are widespread in mine waters, echoing the now widespread discovery of AOM consortia, then AMD-driven CO2 atmospheric fluxes from H2SO4 carbonate weathering could be reduced by as much as 26 TgC/yr. This novel sulfur consortial discovery indicates that organized metabolically linked microbial partnerships are likely widespread and more significant in global elemental cycling than previously considered.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es803616k</identifier><identifier>PMID: 19943646</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Acidiphilium ; Acidiphilium - metabolism ; Acidithiobacillus - metabolism ; Applied sciences ; Bacteria ; Biodegradation, Environmental ; Cells ; Chemical reactions ; Consortia ; Environmental Processes ; Exact sciences and technology ; Geochemistry ; In Situ Hybridization, Fluorescence ; Metabolism ; Mining ; Models, Biological ; Oxidation ; Oxidation-Reduction ; Plankton - metabolism ; Pollution ; Sulfur ; Sulfur - metabolism</subject><ispartof>Environmental science &amp; technology, 2009-12, Vol.43 (23), p.8781-8786</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Dec 1, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a469t-e74299aea42dbc8969395a5694a87615425d4057723719dc7b10ca8a22d197c53</citedby><cites>FETCH-LOGICAL-a469t-e74299aea42dbc8969395a5694a87615425d4057723719dc7b10ca8a22d197c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es803616k$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es803616k$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22183742$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19943646$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Norlund, Kelsey L.I</creatorcontrib><creatorcontrib>Southam, Gordon</creatorcontrib><creatorcontrib>Tyliszczak, Tolek</creatorcontrib><creatorcontrib>Hu, Yongfeng</creatorcontrib><creatorcontrib>Karunakaran, Chithra</creatorcontrib><creatorcontrib>Obst, Martin</creatorcontrib><creatorcontrib>Hitchcock, Adam P</creatorcontrib><creatorcontrib>Warren, Lesley A</creatorcontrib><title>Microbial Architecture of Environmental Sulfur Processes: A Novel Syntrophic Sulfur-Metabolizing Consortia</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Microbial oxidation of sulfur-rich mining waste materials drives acid mine drainage (AMD) and affects the global sulfur biogeochemical cycle. The generation of AMD is a complex, dynamic process that proceeds via multiple reaction pathways. The role of natural consortia of microbes in AMD generation, however, has received very little attention despite their widespread occurrence in mining environments. Through a combination of geochemical experimentation and modeling, scanning transmission X-ray microscopy, and fluorescent in situ hybridization, we show a novel interdependent metabolic arrangement of two ubiquitous and abundant AMD bacteria: chemoautotrophic sulfur-oxidizing Acidithiobacillus sp. and heterotrophic Acidiphilium sp. Highly reminiscent of anaerobic methane oxidation (AOM) consortia, these bacteria are spatially segregated within a planktonic macrostructure of extracellular polymeric substance in which they syntrophically couple sulfur oxidation and reduction reactions in a mutually beneficial arrangement that regenerates their respective sulfur substrates. As discussed here, the geochemical impacts of microbial metabolism are linked to the consortial organization and development of the pod structure, which affects cell−cell interactions and interactions with the surrounding geochemical microenvironment. If these pods are widespread in mine waters, echoing the now widespread discovery of AOM consortia, then AMD-driven CO2 atmospheric fluxes from H2SO4 carbonate weathering could be reduced by as much as 26 TgC/yr. This novel sulfur consortial discovery indicates that organized metabolically linked microbial partnerships are likely widespread and more significant in global elemental cycling than previously considered.</description><subject>Acidiphilium</subject><subject>Acidiphilium - metabolism</subject><subject>Acidithiobacillus - metabolism</subject><subject>Applied sciences</subject><subject>Bacteria</subject><subject>Biodegradation, Environmental</subject><subject>Cells</subject><subject>Chemical reactions</subject><subject>Consortia</subject><subject>Environmental Processes</subject><subject>Exact sciences and technology</subject><subject>Geochemistry</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Metabolism</subject><subject>Mining</subject><subject>Models, Biological</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Plankton - metabolism</subject><subject>Pollution</subject><subject>Sulfur</subject><subject>Sulfur - metabolism</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1LHDEYB_BQLHXVHvoFZBCKeJia90m8LYsvBd9AC70Nz2Qymu1ssk1mBPvpjTi40B56yuH58U_yfxD6QvA3gik5tklhJon89QHNiKC4FEqQLTTDmLBSM_lzG-2ktMQYU4bVJ7RNtOZMcjlDyytnYmgc9MU8mkc3WDOM0RahK079k4vBr6wf8vRu7LsxFrcxGJuSTSfFvLgOTzZPnv0Qw_rRmQmVV3aAJvTuj_MPxSL4FOLgYA997KBP9vN07qIfZ6f3i4vy8ub8-2J-WQKXeihtxanWYIHTtjFKS820ACE1B1VJIjgVLceiqiiriG5N1RBsQAGlLdGVEWwXHb7lrmP4Pdo01CuXjO178DaMqa4EF5zz3MV_JeOUKUV4lgd_yWUYo8_fqHOlhHOpXuOO3lBuNKVou3od3Qric01w_bqo-n1R2e5PgWOzsu1GTpvJ4OsEIBnouwjeuPTuKCWK5aY2DkzaPOrfC18AclCl2w</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Norlund, Kelsey L.I</creator><creator>Southam, Gordon</creator><creator>Tyliszczak, Tolek</creator><creator>Hu, Yongfeng</creator><creator>Karunakaran, Chithra</creator><creator>Obst, Martin</creator><creator>Hitchcock, Adam P</creator><creator>Warren, Lesley A</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7TV</scope><scope>7U6</scope></search><sort><creationdate>20091201</creationdate><title>Microbial Architecture of Environmental Sulfur Processes: A Novel Syntrophic Sulfur-Metabolizing Consortia</title><author>Norlund, Kelsey L.I ; Southam, Gordon ; Tyliszczak, Tolek ; Hu, Yongfeng ; Karunakaran, Chithra ; Obst, Martin ; Hitchcock, Adam P ; Warren, Lesley A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a469t-e74299aea42dbc8969395a5694a87615425d4057723719dc7b10ca8a22d197c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acidiphilium</topic><topic>Acidiphilium - metabolism</topic><topic>Acidithiobacillus - metabolism</topic><topic>Applied sciences</topic><topic>Bacteria</topic><topic>Biodegradation, Environmental</topic><topic>Cells</topic><topic>Chemical reactions</topic><topic>Consortia</topic><topic>Environmental Processes</topic><topic>Exact sciences and technology</topic><topic>Geochemistry</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Metabolism</topic><topic>Mining</topic><topic>Models, Biological</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Plankton - metabolism</topic><topic>Pollution</topic><topic>Sulfur</topic><topic>Sulfur - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Norlund, Kelsey L.I</creatorcontrib><creatorcontrib>Southam, Gordon</creatorcontrib><creatorcontrib>Tyliszczak, Tolek</creatorcontrib><creatorcontrib>Hu, Yongfeng</creatorcontrib><creatorcontrib>Karunakaran, Chithra</creatorcontrib><creatorcontrib>Obst, Martin</creatorcontrib><creatorcontrib>Hitchcock, Adam P</creatorcontrib><creatorcontrib>Warren, Lesley A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Norlund, Kelsey L.I</au><au>Southam, Gordon</au><au>Tyliszczak, Tolek</au><au>Hu, Yongfeng</au><au>Karunakaran, Chithra</au><au>Obst, Martin</au><au>Hitchcock, Adam P</au><au>Warren, Lesley A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial Architecture of Environmental Sulfur Processes: A Novel Syntrophic Sulfur-Metabolizing Consortia</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2009-12-01</date><risdate>2009</risdate><volume>43</volume><issue>23</issue><spage>8781</spage><epage>8786</epage><pages>8781-8786</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Microbial oxidation of sulfur-rich mining waste materials drives acid mine drainage (AMD) and affects the global sulfur biogeochemical cycle. The generation of AMD is a complex, dynamic process that proceeds via multiple reaction pathways. The role of natural consortia of microbes in AMD generation, however, has received very little attention despite their widespread occurrence in mining environments. Through a combination of geochemical experimentation and modeling, scanning transmission X-ray microscopy, and fluorescent in situ hybridization, we show a novel interdependent metabolic arrangement of two ubiquitous and abundant AMD bacteria: chemoautotrophic sulfur-oxidizing Acidithiobacillus sp. and heterotrophic Acidiphilium sp. Highly reminiscent of anaerobic methane oxidation (AOM) consortia, these bacteria are spatially segregated within a planktonic macrostructure of extracellular polymeric substance in which they syntrophically couple sulfur oxidation and reduction reactions in a mutually beneficial arrangement that regenerates their respective sulfur substrates. As discussed here, the geochemical impacts of microbial metabolism are linked to the consortial organization and development of the pod structure, which affects cell−cell interactions and interactions with the surrounding geochemical microenvironment. If these pods are widespread in mine waters, echoing the now widespread discovery of AOM consortia, then AMD-driven CO2 atmospheric fluxes from H2SO4 carbonate weathering could be reduced by as much as 26 TgC/yr. This novel sulfur consortial discovery indicates that organized metabolically linked microbial partnerships are likely widespread and more significant in global elemental cycling than previously considered.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>19943646</pmid><doi>10.1021/es803616k</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2009-12, Vol.43 (23), p.8781-8786
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_754544402
source ACS Publications; MEDLINE
subjects Acidiphilium
Acidiphilium - metabolism
Acidithiobacillus - metabolism
Applied sciences
Bacteria
Biodegradation, Environmental
Cells
Chemical reactions
Consortia
Environmental Processes
Exact sciences and technology
Geochemistry
In Situ Hybridization, Fluorescence
Metabolism
Mining
Models, Biological
Oxidation
Oxidation-Reduction
Plankton - metabolism
Pollution
Sulfur
Sulfur - metabolism
title Microbial Architecture of Environmental Sulfur Processes: A Novel Syntrophic Sulfur-Metabolizing Consortia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A24%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20Architecture%20of%20Environmental%20Sulfur%20Processes:%20A%20Novel%20Syntrophic%20Sulfur-Metabolizing%20Consortia&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Norlund,%20Kelsey%20L.I&rft.date=2009-12-01&rft.volume=43&rft.issue=23&rft.spage=8781&rft.epage=8786&rft.pages=8781-8786&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es803616k&rft_dat=%3Cproquest_cross%3E754544402%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230144682&rft_id=info:pmid/19943646&rfr_iscdi=true