Microbial Architecture of Environmental Sulfur Processes: A Novel Syntrophic Sulfur-Metabolizing Consortia
Microbial oxidation of sulfur-rich mining waste materials drives acid mine drainage (AMD) and affects the global sulfur biogeochemical cycle. The generation of AMD is a complex, dynamic process that proceeds via multiple reaction pathways. The role of natural consortia of microbes in AMD generation,...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2009-12, Vol.43 (23), p.8781-8786 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8786 |
---|---|
container_issue | 23 |
container_start_page | 8781 |
container_title | Environmental science & technology |
container_volume | 43 |
creator | Norlund, Kelsey L.I Southam, Gordon Tyliszczak, Tolek Hu, Yongfeng Karunakaran, Chithra Obst, Martin Hitchcock, Adam P Warren, Lesley A |
description | Microbial oxidation of sulfur-rich mining waste materials drives acid mine drainage (AMD) and affects the global sulfur biogeochemical cycle. The generation of AMD is a complex, dynamic process that proceeds via multiple reaction pathways. The role of natural consortia of microbes in AMD generation, however, has received very little attention despite their widespread occurrence in mining environments. Through a combination of geochemical experimentation and modeling, scanning transmission X-ray microscopy, and fluorescent in situ hybridization, we show a novel interdependent metabolic arrangement of two ubiquitous and abundant AMD bacteria: chemoautotrophic sulfur-oxidizing Acidithiobacillus sp. and heterotrophic Acidiphilium sp. Highly reminiscent of anaerobic methane oxidation (AOM) consortia, these bacteria are spatially segregated within a planktonic macrostructure of extracellular polymeric substance in which they syntrophically couple sulfur oxidation and reduction reactions in a mutually beneficial arrangement that regenerates their respective sulfur substrates. As discussed here, the geochemical impacts of microbial metabolism are linked to the consortial organization and development of the pod structure, which affects cell−cell interactions and interactions with the surrounding geochemical microenvironment. If these pods are widespread in mine waters, echoing the now widespread discovery of AOM consortia, then AMD-driven CO2 atmospheric fluxes from H2SO4 carbonate weathering could be reduced by as much as 26 TgC/yr. This novel sulfur consortial discovery indicates that organized metabolically linked microbial partnerships are likely widespread and more significant in global elemental cycling than previously considered. |
doi_str_mv | 10.1021/es803616k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754544402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>754544402</sourcerecordid><originalsourceid>FETCH-LOGICAL-a469t-e74299aea42dbc8969395a5694a87615425d4057723719dc7b10ca8a22d197c53</originalsourceid><addsrcrecordid>eNqF0U1LHDEYB_BQLHXVHvoFZBCKeJia90m8LYsvBd9AC70Nz2Qymu1ssk1mBPvpjTi40B56yuH58U_yfxD6QvA3gik5tklhJon89QHNiKC4FEqQLTTDmLBSM_lzG-2ktMQYU4bVJ7RNtOZMcjlDyytnYmgc9MU8mkc3WDOM0RahK079k4vBr6wf8vRu7LsxFrcxGJuSTSfFvLgOTzZPnv0Qw_rRmQmVV3aAJvTuj_MPxSL4FOLgYA997KBP9vN07qIfZ6f3i4vy8ub8-2J-WQKXeihtxanWYIHTtjFKS820ACE1B1VJIjgVLceiqiiriG5N1RBsQAGlLdGVEWwXHb7lrmP4Pdo01CuXjO178DaMqa4EF5zz3MV_JeOUKUV4lgd_yWUYo8_fqHOlhHOpXuOO3lBuNKVou3od3Qric01w_bqo-n1R2e5PgWOzsu1GTpvJ4OsEIBnouwjeuPTuKCWK5aY2DkzaPOrfC18AclCl2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230144682</pqid></control><display><type>article</type><title>Microbial Architecture of Environmental Sulfur Processes: A Novel Syntrophic Sulfur-Metabolizing Consortia</title><source>ACS Publications</source><source>MEDLINE</source><creator>Norlund, Kelsey L.I ; Southam, Gordon ; Tyliszczak, Tolek ; Hu, Yongfeng ; Karunakaran, Chithra ; Obst, Martin ; Hitchcock, Adam P ; Warren, Lesley A</creator><creatorcontrib>Norlund, Kelsey L.I ; Southam, Gordon ; Tyliszczak, Tolek ; Hu, Yongfeng ; Karunakaran, Chithra ; Obst, Martin ; Hitchcock, Adam P ; Warren, Lesley A</creatorcontrib><description>Microbial oxidation of sulfur-rich mining waste materials drives acid mine drainage (AMD) and affects the global sulfur biogeochemical cycle. The generation of AMD is a complex, dynamic process that proceeds via multiple reaction pathways. The role of natural consortia of microbes in AMD generation, however, has received very little attention despite their widespread occurrence in mining environments. Through a combination of geochemical experimentation and modeling, scanning transmission X-ray microscopy, and fluorescent in situ hybridization, we show a novel interdependent metabolic arrangement of two ubiquitous and abundant AMD bacteria: chemoautotrophic sulfur-oxidizing Acidithiobacillus sp. and heterotrophic Acidiphilium sp. Highly reminiscent of anaerobic methane oxidation (AOM) consortia, these bacteria are spatially segregated within a planktonic macrostructure of extracellular polymeric substance in which they syntrophically couple sulfur oxidation and reduction reactions in a mutually beneficial arrangement that regenerates their respective sulfur substrates. As discussed here, the geochemical impacts of microbial metabolism are linked to the consortial organization and development of the pod structure, which affects cell−cell interactions and interactions with the surrounding geochemical microenvironment. If these pods are widespread in mine waters, echoing the now widespread discovery of AOM consortia, then AMD-driven CO2 atmospheric fluxes from H2SO4 carbonate weathering could be reduced by as much as 26 TgC/yr. This novel sulfur consortial discovery indicates that organized metabolically linked microbial partnerships are likely widespread and more significant in global elemental cycling than previously considered.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es803616k</identifier><identifier>PMID: 19943646</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Acidiphilium ; Acidiphilium - metabolism ; Acidithiobacillus - metabolism ; Applied sciences ; Bacteria ; Biodegradation, Environmental ; Cells ; Chemical reactions ; Consortia ; Environmental Processes ; Exact sciences and technology ; Geochemistry ; In Situ Hybridization, Fluorescence ; Metabolism ; Mining ; Models, Biological ; Oxidation ; Oxidation-Reduction ; Plankton - metabolism ; Pollution ; Sulfur ; Sulfur - metabolism</subject><ispartof>Environmental science & technology, 2009-12, Vol.43 (23), p.8781-8786</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Dec 1, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a469t-e74299aea42dbc8969395a5694a87615425d4057723719dc7b10ca8a22d197c53</citedby><cites>FETCH-LOGICAL-a469t-e74299aea42dbc8969395a5694a87615425d4057723719dc7b10ca8a22d197c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es803616k$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es803616k$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22183742$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19943646$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Norlund, Kelsey L.I</creatorcontrib><creatorcontrib>Southam, Gordon</creatorcontrib><creatorcontrib>Tyliszczak, Tolek</creatorcontrib><creatorcontrib>Hu, Yongfeng</creatorcontrib><creatorcontrib>Karunakaran, Chithra</creatorcontrib><creatorcontrib>Obst, Martin</creatorcontrib><creatorcontrib>Hitchcock, Adam P</creatorcontrib><creatorcontrib>Warren, Lesley A</creatorcontrib><title>Microbial Architecture of Environmental Sulfur Processes: A Novel Syntrophic Sulfur-Metabolizing Consortia</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Microbial oxidation of sulfur-rich mining waste materials drives acid mine drainage (AMD) and affects the global sulfur biogeochemical cycle. The generation of AMD is a complex, dynamic process that proceeds via multiple reaction pathways. The role of natural consortia of microbes in AMD generation, however, has received very little attention despite their widespread occurrence in mining environments. Through a combination of geochemical experimentation and modeling, scanning transmission X-ray microscopy, and fluorescent in situ hybridization, we show a novel interdependent metabolic arrangement of two ubiquitous and abundant AMD bacteria: chemoautotrophic sulfur-oxidizing Acidithiobacillus sp. and heterotrophic Acidiphilium sp. Highly reminiscent of anaerobic methane oxidation (AOM) consortia, these bacteria are spatially segregated within a planktonic macrostructure of extracellular polymeric substance in which they syntrophically couple sulfur oxidation and reduction reactions in a mutually beneficial arrangement that regenerates their respective sulfur substrates. As discussed here, the geochemical impacts of microbial metabolism are linked to the consortial organization and development of the pod structure, which affects cell−cell interactions and interactions with the surrounding geochemical microenvironment. If these pods are widespread in mine waters, echoing the now widespread discovery of AOM consortia, then AMD-driven CO2 atmospheric fluxes from H2SO4 carbonate weathering could be reduced by as much as 26 TgC/yr. This novel sulfur consortial discovery indicates that organized metabolically linked microbial partnerships are likely widespread and more significant in global elemental cycling than previously considered.</description><subject>Acidiphilium</subject><subject>Acidiphilium - metabolism</subject><subject>Acidithiobacillus - metabolism</subject><subject>Applied sciences</subject><subject>Bacteria</subject><subject>Biodegradation, Environmental</subject><subject>Cells</subject><subject>Chemical reactions</subject><subject>Consortia</subject><subject>Environmental Processes</subject><subject>Exact sciences and technology</subject><subject>Geochemistry</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Metabolism</subject><subject>Mining</subject><subject>Models, Biological</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Plankton - metabolism</subject><subject>Pollution</subject><subject>Sulfur</subject><subject>Sulfur - metabolism</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1LHDEYB_BQLHXVHvoFZBCKeJia90m8LYsvBd9AC70Nz2Qymu1ssk1mBPvpjTi40B56yuH58U_yfxD6QvA3gik5tklhJon89QHNiKC4FEqQLTTDmLBSM_lzG-2ktMQYU4bVJ7RNtOZMcjlDyytnYmgc9MU8mkc3WDOM0RahK079k4vBr6wf8vRu7LsxFrcxGJuSTSfFvLgOTzZPnv0Qw_rRmQmVV3aAJvTuj_MPxSL4FOLgYA997KBP9vN07qIfZ6f3i4vy8ub8-2J-WQKXeihtxanWYIHTtjFKS820ACE1B1VJIjgVLceiqiiriG5N1RBsQAGlLdGVEWwXHb7lrmP4Pdo01CuXjO178DaMqa4EF5zz3MV_JeOUKUV4lgd_yWUYo8_fqHOlhHOpXuOO3lBuNKVou3od3Qric01w_bqo-n1R2e5PgWOzsu1GTpvJ4OsEIBnouwjeuPTuKCWK5aY2DkzaPOrfC18AclCl2w</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Norlund, Kelsey L.I</creator><creator>Southam, Gordon</creator><creator>Tyliszczak, Tolek</creator><creator>Hu, Yongfeng</creator><creator>Karunakaran, Chithra</creator><creator>Obst, Martin</creator><creator>Hitchcock, Adam P</creator><creator>Warren, Lesley A</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7TV</scope><scope>7U6</scope></search><sort><creationdate>20091201</creationdate><title>Microbial Architecture of Environmental Sulfur Processes: A Novel Syntrophic Sulfur-Metabolizing Consortia</title><author>Norlund, Kelsey L.I ; Southam, Gordon ; Tyliszczak, Tolek ; Hu, Yongfeng ; Karunakaran, Chithra ; Obst, Martin ; Hitchcock, Adam P ; Warren, Lesley A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a469t-e74299aea42dbc8969395a5694a87615425d4057723719dc7b10ca8a22d197c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acidiphilium</topic><topic>Acidiphilium - metabolism</topic><topic>Acidithiobacillus - metabolism</topic><topic>Applied sciences</topic><topic>Bacteria</topic><topic>Biodegradation, Environmental</topic><topic>Cells</topic><topic>Chemical reactions</topic><topic>Consortia</topic><topic>Environmental Processes</topic><topic>Exact sciences and technology</topic><topic>Geochemistry</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Metabolism</topic><topic>Mining</topic><topic>Models, Biological</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Plankton - metabolism</topic><topic>Pollution</topic><topic>Sulfur</topic><topic>Sulfur - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Norlund, Kelsey L.I</creatorcontrib><creatorcontrib>Southam, Gordon</creatorcontrib><creatorcontrib>Tyliszczak, Tolek</creatorcontrib><creatorcontrib>Hu, Yongfeng</creatorcontrib><creatorcontrib>Karunakaran, Chithra</creatorcontrib><creatorcontrib>Obst, Martin</creatorcontrib><creatorcontrib>Hitchcock, Adam P</creatorcontrib><creatorcontrib>Warren, Lesley A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Norlund, Kelsey L.I</au><au>Southam, Gordon</au><au>Tyliszczak, Tolek</au><au>Hu, Yongfeng</au><au>Karunakaran, Chithra</au><au>Obst, Martin</au><au>Hitchcock, Adam P</au><au>Warren, Lesley A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial Architecture of Environmental Sulfur Processes: A Novel Syntrophic Sulfur-Metabolizing Consortia</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2009-12-01</date><risdate>2009</risdate><volume>43</volume><issue>23</issue><spage>8781</spage><epage>8786</epage><pages>8781-8786</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Microbial oxidation of sulfur-rich mining waste materials drives acid mine drainage (AMD) and affects the global sulfur biogeochemical cycle. The generation of AMD is a complex, dynamic process that proceeds via multiple reaction pathways. The role of natural consortia of microbes in AMD generation, however, has received very little attention despite their widespread occurrence in mining environments. Through a combination of geochemical experimentation and modeling, scanning transmission X-ray microscopy, and fluorescent in situ hybridization, we show a novel interdependent metabolic arrangement of two ubiquitous and abundant AMD bacteria: chemoautotrophic sulfur-oxidizing Acidithiobacillus sp. and heterotrophic Acidiphilium sp. Highly reminiscent of anaerobic methane oxidation (AOM) consortia, these bacteria are spatially segregated within a planktonic macrostructure of extracellular polymeric substance in which they syntrophically couple sulfur oxidation and reduction reactions in a mutually beneficial arrangement that regenerates their respective sulfur substrates. As discussed here, the geochemical impacts of microbial metabolism are linked to the consortial organization and development of the pod structure, which affects cell−cell interactions and interactions with the surrounding geochemical microenvironment. If these pods are widespread in mine waters, echoing the now widespread discovery of AOM consortia, then AMD-driven CO2 atmospheric fluxes from H2SO4 carbonate weathering could be reduced by as much as 26 TgC/yr. This novel sulfur consortial discovery indicates that organized metabolically linked microbial partnerships are likely widespread and more significant in global elemental cycling than previously considered.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>19943646</pmid><doi>10.1021/es803616k</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2009-12, Vol.43 (23), p.8781-8786 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_754544402 |
source | ACS Publications; MEDLINE |
subjects | Acidiphilium Acidiphilium - metabolism Acidithiobacillus - metabolism Applied sciences Bacteria Biodegradation, Environmental Cells Chemical reactions Consortia Environmental Processes Exact sciences and technology Geochemistry In Situ Hybridization, Fluorescence Metabolism Mining Models, Biological Oxidation Oxidation-Reduction Plankton - metabolism Pollution Sulfur Sulfur - metabolism |
title | Microbial Architecture of Environmental Sulfur Processes: A Novel Syntrophic Sulfur-Metabolizing Consortia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A24%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20Architecture%20of%20Environmental%20Sulfur%20Processes:%20A%20Novel%20Syntrophic%20Sulfur-Metabolizing%20Consortia&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Norlund,%20Kelsey%20L.I&rft.date=2009-12-01&rft.volume=43&rft.issue=23&rft.spage=8781&rft.epage=8786&rft.pages=8781-8786&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es803616k&rft_dat=%3Cproquest_cross%3E754544402%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230144682&rft_id=info:pmid/19943646&rfr_iscdi=true |