Understanding Long-Term Changes in Microbial Fuel Cell Performance Using Electrochemical Impedance Spectroscopy
Changes in the anode, cathode, and solution/membrane impedances during enrichment of an anode microbial consortium were measured using electrochemical impedance spectroscopy. The consortium was enriched in a compact, flow-through porous electrode chamber coupled to an air-cathode. The anode impedanc...
Gespeichert in:
Veröffentlicht in: | Environmental Science & Technology 2010-04, Vol.44 (7), p.2740-2745 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2745 |
---|---|
container_issue | 7 |
container_start_page | 2740 |
container_title | Environmental Science & Technology |
container_volume | 44 |
creator | Borole, Abhijeet P Aaron, Doug Hamilton, Choo Y Tsouris, Costas |
description | Changes in the anode, cathode, and solution/membrane impedances during enrichment of an anode microbial consortium were measured using electrochemical impedance spectroscopy. The consortium was enriched in a compact, flow-through porous electrode chamber coupled to an air-cathode. The anode impedance initially decreased from 296.1 to 36.3 Ω in the first 43 days indicating exoelectrogenic biofilm formation. The external load on the MFC was decreased in a stepwise manner to allow further enrichment. MFC operation at a final load of 50 Ω decreased the anode impedance to 1.4 Ω, with a corresponding cathode and membrane/solution impedance of 12.1 and 3.0 Ω, respectively. An analysis of the capacitive element suggested that most of the three-dimensional anode surface was participating in the bioelectrochemical reaction. The power density of the air-cathode MFC stabilized after 3 months of operation and stayed at 422 ± 42 mW/m2 (33 W/m3) for the next 3 months. The normalized anode impedance for the MFC was 0.017 kΩ cm2, a 28-fold reduction over that reported previously. This study demonstrates a unique ability of biological systems to reduce the electron transfer resistance in MFCs, and their potential for stable energy production over extended periods of time. |
doi_str_mv | 10.1021/es9032937 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_754543555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733157796</sourcerecordid><originalsourceid>FETCH-LOGICAL-a428t-d790d1a87b66e4e57e98b0dfd94d87294e931579f0671c2d28f5a2ff18e18a4f3</originalsourceid><addsrcrecordid>eNqFkc1uEzEUhS0EoqGw4AXQsECIxYB_xmN7WUUtVAoCiUZiN3Ls68TVjD3YM4u-PU4TEiQWrLy4n8-59xyEXhP8kWBKPkFWmFHFxBO0IJzimktOnqIFxoTVirU_L9CLnO8xxpRh-RxdUEwpbYVcoLgOFlKedLA-bKtVDNv6DtJQLXc6bCFXPlRfvUlx43Vf3czQV0vo--o7JBfToIOBap33X697MFOKZgeDN4W9HUawj_Mf4-Mkmzg-vETPnO4zvDq-l2h9c323_FKvvn2-XV6tat1QOdVWKGyJlmLTttAAF6DkBltnVWOloKoBxQgXyuFWEEMtlY5r6hyRQKRuHLtEbw-6MU--y8ZPYHYmhlBW6ZRoMWOFeX9gxhR_zZCnbvDZlOt0gDjnTvCGN4xz_n-S7bcRqj37nsj7OKdQTu2kIk2R3Pt-ODAl1pwTuG5MftDpoSO42xfanQot7Juj3rwZwJ7IPw0W4N0R0LnE7lKJ3OczR0tKvPmL0yafd_rX8DfZkbLR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>89147543</pqid></control><display><type>article</type><title>Understanding Long-Term Changes in Microbial Fuel Cell Performance Using Electrochemical Impedance Spectroscopy</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Borole, Abhijeet P ; Aaron, Doug ; Hamilton, Choo Y ; Tsouris, Costas</creator><creatorcontrib>Borole, Abhijeet P ; Aaron, Doug ; Hamilton, Choo Y ; Tsouris, Costas ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Changes in the anode, cathode, and solution/membrane impedances during enrichment of an anode microbial consortium were measured using electrochemical impedance spectroscopy. The consortium was enriched in a compact, flow-through porous electrode chamber coupled to an air-cathode. The anode impedance initially decreased from 296.1 to 36.3 Ω in the first 43 days indicating exoelectrogenic biofilm formation. The external load on the MFC was decreased in a stepwise manner to allow further enrichment. MFC operation at a final load of 50 Ω decreased the anode impedance to 1.4 Ω, with a corresponding cathode and membrane/solution impedance of 12.1 and 3.0 Ω, respectively. An analysis of the capacitive element suggested that most of the three-dimensional anode surface was participating in the bioelectrochemical reaction. The power density of the air-cathode MFC stabilized after 3 months of operation and stayed at 422 ± 42 mW/m2 (33 W/m3) for the next 3 months. The normalized anode impedance for the MFC was 0.017 kΩ cm2, a 28-fold reduction over that reported previously. This study demonstrates a unique ability of biological systems to reduce the electron transfer resistance in MFCs, and their potential for stable energy production over extended periods of time.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es9032937</identifier><identifier>PMID: 20222678</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>30 DIRECT ENERGY CONVERSION ; Animal, plant and microbial ecology ; ANODES ; Applied ecology ; Applied sciences ; Bioelectric Energy Sources ; Biofilms ; biofuel cells ; Biological and medical sciences ; CATHODES ; Ecotoxicology, biological effects of pollution ; Electric Impedance ; Electrochemical Impedance spectroscopy ; Electrochemistry ; Electrochemistry - methods ; ELECTRODES ; ELECTRON TRANSFER ; Electrons ; Energy and the Environment ; Exact sciences and technology ; FUEL CELLS ; Fundamental and applied biological sciences. Psychology ; General aspects ; IMPEDANCE ; Membranes ; Membranes, Artificial ; Models, Chemical ; Pollution ; POWER DENSITY ; PRODUCTION ; Solutions ; SPECTROSCOPY ; Spectrum analysis ; Spectrum Analysis - methods ; Studies ; Time Factors</subject><ispartof>Environmental Science & Technology, 2010-04, Vol.44 (7), p.2740-2745</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Apr 1, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a428t-d790d1a87b66e4e57e98b0dfd94d87294e931579f0671c2d28f5a2ff18e18a4f3</citedby><cites>FETCH-LOGICAL-a428t-d790d1a87b66e4e57e98b0dfd94d87294e931579f0671c2d28f5a2ff18e18a4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es9032937$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es9032937$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22579548$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20222678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/976033$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Borole, Abhijeet P</creatorcontrib><creatorcontrib>Aaron, Doug</creatorcontrib><creatorcontrib>Hamilton, Choo Y</creatorcontrib><creatorcontrib>Tsouris, Costas</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Understanding Long-Term Changes in Microbial Fuel Cell Performance Using Electrochemical Impedance Spectroscopy</title><title>Environmental Science & Technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Changes in the anode, cathode, and solution/membrane impedances during enrichment of an anode microbial consortium were measured using electrochemical impedance spectroscopy. The consortium was enriched in a compact, flow-through porous electrode chamber coupled to an air-cathode. The anode impedance initially decreased from 296.1 to 36.3 Ω in the first 43 days indicating exoelectrogenic biofilm formation. The external load on the MFC was decreased in a stepwise manner to allow further enrichment. MFC operation at a final load of 50 Ω decreased the anode impedance to 1.4 Ω, with a corresponding cathode and membrane/solution impedance of 12.1 and 3.0 Ω, respectively. An analysis of the capacitive element suggested that most of the three-dimensional anode surface was participating in the bioelectrochemical reaction. The power density of the air-cathode MFC stabilized after 3 months of operation and stayed at 422 ± 42 mW/m2 (33 W/m3) for the next 3 months. The normalized anode impedance for the MFC was 0.017 kΩ cm2, a 28-fold reduction over that reported previously. This study demonstrates a unique ability of biological systems to reduce the electron transfer resistance in MFCs, and their potential for stable energy production over extended periods of time.</description><subject>30 DIRECT ENERGY CONVERSION</subject><subject>Animal, plant and microbial ecology</subject><subject>ANODES</subject><subject>Applied ecology</subject><subject>Applied sciences</subject><subject>Bioelectric Energy Sources</subject><subject>Biofilms</subject><subject>biofuel cells</subject><subject>Biological and medical sciences</subject><subject>CATHODES</subject><subject>Ecotoxicology, biological effects of pollution</subject><subject>Electric Impedance</subject><subject>Electrochemical Impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrochemistry - methods</subject><subject>ELECTRODES</subject><subject>ELECTRON TRANSFER</subject><subject>Electrons</subject><subject>Energy and the Environment</subject><subject>Exact sciences and technology</subject><subject>FUEL CELLS</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>IMPEDANCE</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Models, Chemical</subject><subject>Pollution</subject><subject>POWER DENSITY</subject><subject>PRODUCTION</subject><subject>Solutions</subject><subject>SPECTROSCOPY</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis - methods</subject><subject>Studies</subject><subject>Time Factors</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1uEzEUhS0EoqGw4AXQsECIxYB_xmN7WUUtVAoCiUZiN3Ls68TVjD3YM4u-PU4TEiQWrLy4n8-59xyEXhP8kWBKPkFWmFHFxBO0IJzimktOnqIFxoTVirU_L9CLnO8xxpRh-RxdUEwpbYVcoLgOFlKedLA-bKtVDNv6DtJQLXc6bCFXPlRfvUlx43Vf3czQV0vo--o7JBfToIOBap33X697MFOKZgeDN4W9HUawj_Mf4-Mkmzg-vETPnO4zvDq-l2h9c323_FKvvn2-XV6tat1QOdVWKGyJlmLTttAAF6DkBltnVWOloKoBxQgXyuFWEEMtlY5r6hyRQKRuHLtEbw-6MU--y8ZPYHYmhlBW6ZRoMWOFeX9gxhR_zZCnbvDZlOt0gDjnTvCGN4xz_n-S7bcRqj37nsj7OKdQTu2kIk2R3Pt-ODAl1pwTuG5MftDpoSO42xfanQot7Juj3rwZwJ7IPw0W4N0R0LnE7lKJ3OczR0tKvPmL0yafd_rX8DfZkbLR</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Borole, Abhijeet P</creator><creator>Aaron, Doug</creator><creator>Hamilton, Choo Y</creator><creator>Tsouris, Costas</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20100401</creationdate><title>Understanding Long-Term Changes in Microbial Fuel Cell Performance Using Electrochemical Impedance Spectroscopy</title><author>Borole, Abhijeet P ; Aaron, Doug ; Hamilton, Choo Y ; Tsouris, Costas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a428t-d790d1a87b66e4e57e98b0dfd94d87294e931579f0671c2d28f5a2ff18e18a4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>30 DIRECT ENERGY CONVERSION</topic><topic>Animal, plant and microbial ecology</topic><topic>ANODES</topic><topic>Applied ecology</topic><topic>Applied sciences</topic><topic>Bioelectric Energy Sources</topic><topic>Biofilms</topic><topic>biofuel cells</topic><topic>Biological and medical sciences</topic><topic>CATHODES</topic><topic>Ecotoxicology, biological effects of pollution</topic><topic>Electric Impedance</topic><topic>Electrochemical Impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrochemistry - methods</topic><topic>ELECTRODES</topic><topic>ELECTRON TRANSFER</topic><topic>Electrons</topic><topic>Energy and the Environment</topic><topic>Exact sciences and technology</topic><topic>FUEL CELLS</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>IMPEDANCE</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Models, Chemical</topic><topic>Pollution</topic><topic>POWER DENSITY</topic><topic>PRODUCTION</topic><topic>Solutions</topic><topic>SPECTROSCOPY</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis - methods</topic><topic>Studies</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borole, Abhijeet P</creatorcontrib><creatorcontrib>Aaron, Doug</creatorcontrib><creatorcontrib>Hamilton, Choo Y</creatorcontrib><creatorcontrib>Tsouris, Costas</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Environmental Science & Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borole, Abhijeet P</au><au>Aaron, Doug</au><au>Hamilton, Choo Y</au><au>Tsouris, Costas</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Long-Term Changes in Microbial Fuel Cell Performance Using Electrochemical Impedance Spectroscopy</atitle><jtitle>Environmental Science & Technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2010-04-01</date><risdate>2010</risdate><volume>44</volume><issue>7</issue><spage>2740</spage><epage>2745</epage><pages>2740-2745</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Changes in the anode, cathode, and solution/membrane impedances during enrichment of an anode microbial consortium were measured using electrochemical impedance spectroscopy. The consortium was enriched in a compact, flow-through porous electrode chamber coupled to an air-cathode. The anode impedance initially decreased from 296.1 to 36.3 Ω in the first 43 days indicating exoelectrogenic biofilm formation. The external load on the MFC was decreased in a stepwise manner to allow further enrichment. MFC operation at a final load of 50 Ω decreased the anode impedance to 1.4 Ω, with a corresponding cathode and membrane/solution impedance of 12.1 and 3.0 Ω, respectively. An analysis of the capacitive element suggested that most of the three-dimensional anode surface was participating in the bioelectrochemical reaction. The power density of the air-cathode MFC stabilized after 3 months of operation and stayed at 422 ± 42 mW/m2 (33 W/m3) for the next 3 months. The normalized anode impedance for the MFC was 0.017 kΩ cm2, a 28-fold reduction over that reported previously. This study demonstrates a unique ability of biological systems to reduce the electron transfer resistance in MFCs, and their potential for stable energy production over extended periods of time.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20222678</pmid><doi>10.1021/es9032937</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental Science & Technology, 2010-04, Vol.44 (7), p.2740-2745 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_754543555 |
source | MEDLINE; American Chemical Society Journals |
subjects | 30 DIRECT ENERGY CONVERSION Animal, plant and microbial ecology ANODES Applied ecology Applied sciences Bioelectric Energy Sources Biofilms biofuel cells Biological and medical sciences CATHODES Ecotoxicology, biological effects of pollution Electric Impedance Electrochemical Impedance spectroscopy Electrochemistry Electrochemistry - methods ELECTRODES ELECTRON TRANSFER Electrons Energy and the Environment Exact sciences and technology FUEL CELLS Fundamental and applied biological sciences. Psychology General aspects IMPEDANCE Membranes Membranes, Artificial Models, Chemical Pollution POWER DENSITY PRODUCTION Solutions SPECTROSCOPY Spectrum analysis Spectrum Analysis - methods Studies Time Factors |
title | Understanding Long-Term Changes in Microbial Fuel Cell Performance Using Electrochemical Impedance Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Long-Term%20Changes%20in%20Microbial%20Fuel%20Cell%20Performance%20Using%20Electrochemical%20Impedance%20Spectroscopy&rft.jtitle=Environmental%20Science%20&%20Technology&rft.au=Borole,%20Abhijeet%20P&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2010-04-01&rft.volume=44&rft.issue=7&rft.spage=2740&rft.epage=2745&rft.pages=2740-2745&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es9032937&rft_dat=%3Cproquest_osti_%3E733157796%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=89147543&rft_id=info:pmid/20222678&rfr_iscdi=true |