Understanding Long-Term Changes in Microbial Fuel Cell Performance Using Electrochemical Impedance Spectroscopy

Changes in the anode, cathode, and solution/membrane impedances during enrichment of an anode microbial consortium were measured using electrochemical impedance spectroscopy. The consortium was enriched in a compact, flow-through porous electrode chamber coupled to an air-cathode. The anode impedanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental Science & Technology 2010-04, Vol.44 (7), p.2740-2745
Hauptverfasser: Borole, Abhijeet P, Aaron, Doug, Hamilton, Choo Y, Tsouris, Costas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2745
container_issue 7
container_start_page 2740
container_title Environmental Science & Technology
container_volume 44
creator Borole, Abhijeet P
Aaron, Doug
Hamilton, Choo Y
Tsouris, Costas
description Changes in the anode, cathode, and solution/membrane impedances during enrichment of an anode microbial consortium were measured using electrochemical impedance spectroscopy. The consortium was enriched in a compact, flow-through porous electrode chamber coupled to an air-cathode. The anode impedance initially decreased from 296.1 to 36.3 Ω in the first 43 days indicating exoelectrogenic biofilm formation. The external load on the MFC was decreased in a stepwise manner to allow further enrichment. MFC operation at a final load of 50 Ω decreased the anode impedance to 1.4 Ω, with a corresponding cathode and membrane/solution impedance of 12.1 and 3.0 Ω, respectively. An analysis of the capacitive element suggested that most of the three-dimensional anode surface was participating in the bioelectrochemical reaction. The power density of the air-cathode MFC stabilized after 3 months of operation and stayed at 422 ± 42 mW/m2 (33 W/m3) for the next 3 months. The normalized anode impedance for the MFC was 0.017 kΩ cm2, a 28-fold reduction over that reported previously. This study demonstrates a unique ability of biological systems to reduce the electron transfer resistance in MFCs, and their potential for stable energy production over extended periods of time.
doi_str_mv 10.1021/es9032937
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_754543555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733157796</sourcerecordid><originalsourceid>FETCH-LOGICAL-a428t-d790d1a87b66e4e57e98b0dfd94d87294e931579f0671c2d28f5a2ff18e18a4f3</originalsourceid><addsrcrecordid>eNqFkc1uEzEUhS0EoqGw4AXQsECIxYB_xmN7WUUtVAoCiUZiN3Ls68TVjD3YM4u-PU4TEiQWrLy4n8-59xyEXhP8kWBKPkFWmFHFxBO0IJzimktOnqIFxoTVirU_L9CLnO8xxpRh-RxdUEwpbYVcoLgOFlKedLA-bKtVDNv6DtJQLXc6bCFXPlRfvUlx43Vf3czQV0vo--o7JBfToIOBap33X697MFOKZgeDN4W9HUawj_Mf4-Mkmzg-vETPnO4zvDq-l2h9c323_FKvvn2-XV6tat1QOdVWKGyJlmLTttAAF6DkBltnVWOloKoBxQgXyuFWEEMtlY5r6hyRQKRuHLtEbw-6MU--y8ZPYHYmhlBW6ZRoMWOFeX9gxhR_zZCnbvDZlOt0gDjnTvCGN4xz_n-S7bcRqj37nsj7OKdQTu2kIk2R3Pt-ODAl1pwTuG5MftDpoSO42xfanQot7Juj3rwZwJ7IPw0W4N0R0LnE7lKJ3OczR0tKvPmL0yafd_rX8DfZkbLR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>89147543</pqid></control><display><type>article</type><title>Understanding Long-Term Changes in Microbial Fuel Cell Performance Using Electrochemical Impedance Spectroscopy</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Borole, Abhijeet P ; Aaron, Doug ; Hamilton, Choo Y ; Tsouris, Costas</creator><creatorcontrib>Borole, Abhijeet P ; Aaron, Doug ; Hamilton, Choo Y ; Tsouris, Costas ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Changes in the anode, cathode, and solution/membrane impedances during enrichment of an anode microbial consortium were measured using electrochemical impedance spectroscopy. The consortium was enriched in a compact, flow-through porous electrode chamber coupled to an air-cathode. The anode impedance initially decreased from 296.1 to 36.3 Ω in the first 43 days indicating exoelectrogenic biofilm formation. The external load on the MFC was decreased in a stepwise manner to allow further enrichment. MFC operation at a final load of 50 Ω decreased the anode impedance to 1.4 Ω, with a corresponding cathode and membrane/solution impedance of 12.1 and 3.0 Ω, respectively. An analysis of the capacitive element suggested that most of the three-dimensional anode surface was participating in the bioelectrochemical reaction. The power density of the air-cathode MFC stabilized after 3 months of operation and stayed at 422 ± 42 mW/m2 (33 W/m3) for the next 3 months. The normalized anode impedance for the MFC was 0.017 kΩ cm2, a 28-fold reduction over that reported previously. This study demonstrates a unique ability of biological systems to reduce the electron transfer resistance in MFCs, and their potential for stable energy production over extended periods of time.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es9032937</identifier><identifier>PMID: 20222678</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>30 DIRECT ENERGY CONVERSION ; Animal, plant and microbial ecology ; ANODES ; Applied ecology ; Applied sciences ; Bioelectric Energy Sources ; Biofilms ; biofuel cells ; Biological and medical sciences ; CATHODES ; Ecotoxicology, biological effects of pollution ; Electric Impedance ; Electrochemical Impedance spectroscopy ; Electrochemistry ; Electrochemistry - methods ; ELECTRODES ; ELECTRON TRANSFER ; Electrons ; Energy and the Environment ; Exact sciences and technology ; FUEL CELLS ; Fundamental and applied biological sciences. Psychology ; General aspects ; IMPEDANCE ; Membranes ; Membranes, Artificial ; Models, Chemical ; Pollution ; POWER DENSITY ; PRODUCTION ; Solutions ; SPECTROSCOPY ; Spectrum analysis ; Spectrum Analysis - methods ; Studies ; Time Factors</subject><ispartof>Environmental Science &amp; Technology, 2010-04, Vol.44 (7), p.2740-2745</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Apr 1, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a428t-d790d1a87b66e4e57e98b0dfd94d87294e931579f0671c2d28f5a2ff18e18a4f3</citedby><cites>FETCH-LOGICAL-a428t-d790d1a87b66e4e57e98b0dfd94d87294e931579f0671c2d28f5a2ff18e18a4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es9032937$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es9032937$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22579548$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20222678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/976033$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Borole, Abhijeet P</creatorcontrib><creatorcontrib>Aaron, Doug</creatorcontrib><creatorcontrib>Hamilton, Choo Y</creatorcontrib><creatorcontrib>Tsouris, Costas</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Understanding Long-Term Changes in Microbial Fuel Cell Performance Using Electrochemical Impedance Spectroscopy</title><title>Environmental Science &amp; Technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Changes in the anode, cathode, and solution/membrane impedances during enrichment of an anode microbial consortium were measured using electrochemical impedance spectroscopy. The consortium was enriched in a compact, flow-through porous electrode chamber coupled to an air-cathode. The anode impedance initially decreased from 296.1 to 36.3 Ω in the first 43 days indicating exoelectrogenic biofilm formation. The external load on the MFC was decreased in a stepwise manner to allow further enrichment. MFC operation at a final load of 50 Ω decreased the anode impedance to 1.4 Ω, with a corresponding cathode and membrane/solution impedance of 12.1 and 3.0 Ω, respectively. An analysis of the capacitive element suggested that most of the three-dimensional anode surface was participating in the bioelectrochemical reaction. The power density of the air-cathode MFC stabilized after 3 months of operation and stayed at 422 ± 42 mW/m2 (33 W/m3) for the next 3 months. The normalized anode impedance for the MFC was 0.017 kΩ cm2, a 28-fold reduction over that reported previously. This study demonstrates a unique ability of biological systems to reduce the electron transfer resistance in MFCs, and their potential for stable energy production over extended periods of time.</description><subject>30 DIRECT ENERGY CONVERSION</subject><subject>Animal, plant and microbial ecology</subject><subject>ANODES</subject><subject>Applied ecology</subject><subject>Applied sciences</subject><subject>Bioelectric Energy Sources</subject><subject>Biofilms</subject><subject>biofuel cells</subject><subject>Biological and medical sciences</subject><subject>CATHODES</subject><subject>Ecotoxicology, biological effects of pollution</subject><subject>Electric Impedance</subject><subject>Electrochemical Impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrochemistry - methods</subject><subject>ELECTRODES</subject><subject>ELECTRON TRANSFER</subject><subject>Electrons</subject><subject>Energy and the Environment</subject><subject>Exact sciences and technology</subject><subject>FUEL CELLS</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>IMPEDANCE</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Models, Chemical</subject><subject>Pollution</subject><subject>POWER DENSITY</subject><subject>PRODUCTION</subject><subject>Solutions</subject><subject>SPECTROSCOPY</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis - methods</subject><subject>Studies</subject><subject>Time Factors</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1uEzEUhS0EoqGw4AXQsECIxYB_xmN7WUUtVAoCiUZiN3Ls68TVjD3YM4u-PU4TEiQWrLy4n8-59xyEXhP8kWBKPkFWmFHFxBO0IJzimktOnqIFxoTVirU_L9CLnO8xxpRh-RxdUEwpbYVcoLgOFlKedLA-bKtVDNv6DtJQLXc6bCFXPlRfvUlx43Vf3czQV0vo--o7JBfToIOBap33X697MFOKZgeDN4W9HUawj_Mf4-Mkmzg-vETPnO4zvDq-l2h9c323_FKvvn2-XV6tat1QOdVWKGyJlmLTttAAF6DkBltnVWOloKoBxQgXyuFWEEMtlY5r6hyRQKRuHLtEbw-6MU--y8ZPYHYmhlBW6ZRoMWOFeX9gxhR_zZCnbvDZlOt0gDjnTvCGN4xz_n-S7bcRqj37nsj7OKdQTu2kIk2R3Pt-ODAl1pwTuG5MftDpoSO42xfanQot7Juj3rwZwJ7IPw0W4N0R0LnE7lKJ3OczR0tKvPmL0yafd_rX8DfZkbLR</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Borole, Abhijeet P</creator><creator>Aaron, Doug</creator><creator>Hamilton, Choo Y</creator><creator>Tsouris, Costas</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20100401</creationdate><title>Understanding Long-Term Changes in Microbial Fuel Cell Performance Using Electrochemical Impedance Spectroscopy</title><author>Borole, Abhijeet P ; Aaron, Doug ; Hamilton, Choo Y ; Tsouris, Costas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a428t-d790d1a87b66e4e57e98b0dfd94d87294e931579f0671c2d28f5a2ff18e18a4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>30 DIRECT ENERGY CONVERSION</topic><topic>Animal, plant and microbial ecology</topic><topic>ANODES</topic><topic>Applied ecology</topic><topic>Applied sciences</topic><topic>Bioelectric Energy Sources</topic><topic>Biofilms</topic><topic>biofuel cells</topic><topic>Biological and medical sciences</topic><topic>CATHODES</topic><topic>Ecotoxicology, biological effects of pollution</topic><topic>Electric Impedance</topic><topic>Electrochemical Impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrochemistry - methods</topic><topic>ELECTRODES</topic><topic>ELECTRON TRANSFER</topic><topic>Electrons</topic><topic>Energy and the Environment</topic><topic>Exact sciences and technology</topic><topic>FUEL CELLS</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>IMPEDANCE</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Models, Chemical</topic><topic>Pollution</topic><topic>POWER DENSITY</topic><topic>PRODUCTION</topic><topic>Solutions</topic><topic>SPECTROSCOPY</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis - methods</topic><topic>Studies</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borole, Abhijeet P</creatorcontrib><creatorcontrib>Aaron, Doug</creatorcontrib><creatorcontrib>Hamilton, Choo Y</creatorcontrib><creatorcontrib>Tsouris, Costas</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Environmental Science &amp; Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borole, Abhijeet P</au><au>Aaron, Doug</au><au>Hamilton, Choo Y</au><au>Tsouris, Costas</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Long-Term Changes in Microbial Fuel Cell Performance Using Electrochemical Impedance Spectroscopy</atitle><jtitle>Environmental Science &amp; Technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2010-04-01</date><risdate>2010</risdate><volume>44</volume><issue>7</issue><spage>2740</spage><epage>2745</epage><pages>2740-2745</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Changes in the anode, cathode, and solution/membrane impedances during enrichment of an anode microbial consortium were measured using electrochemical impedance spectroscopy. The consortium was enriched in a compact, flow-through porous electrode chamber coupled to an air-cathode. The anode impedance initially decreased from 296.1 to 36.3 Ω in the first 43 days indicating exoelectrogenic biofilm formation. The external load on the MFC was decreased in a stepwise manner to allow further enrichment. MFC operation at a final load of 50 Ω decreased the anode impedance to 1.4 Ω, with a corresponding cathode and membrane/solution impedance of 12.1 and 3.0 Ω, respectively. An analysis of the capacitive element suggested that most of the three-dimensional anode surface was participating in the bioelectrochemical reaction. The power density of the air-cathode MFC stabilized after 3 months of operation and stayed at 422 ± 42 mW/m2 (33 W/m3) for the next 3 months. The normalized anode impedance for the MFC was 0.017 kΩ cm2, a 28-fold reduction over that reported previously. This study demonstrates a unique ability of biological systems to reduce the electron transfer resistance in MFCs, and their potential for stable energy production over extended periods of time.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20222678</pmid><doi>10.1021/es9032937</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental Science & Technology, 2010-04, Vol.44 (7), p.2740-2745
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_754543555
source MEDLINE; American Chemical Society Journals
subjects 30 DIRECT ENERGY CONVERSION
Animal, plant and microbial ecology
ANODES
Applied ecology
Applied sciences
Bioelectric Energy Sources
Biofilms
biofuel cells
Biological and medical sciences
CATHODES
Ecotoxicology, biological effects of pollution
Electric Impedance
Electrochemical Impedance spectroscopy
Electrochemistry
Electrochemistry - methods
ELECTRODES
ELECTRON TRANSFER
Electrons
Energy and the Environment
Exact sciences and technology
FUEL CELLS
Fundamental and applied biological sciences. Psychology
General aspects
IMPEDANCE
Membranes
Membranes, Artificial
Models, Chemical
Pollution
POWER DENSITY
PRODUCTION
Solutions
SPECTROSCOPY
Spectrum analysis
Spectrum Analysis - methods
Studies
Time Factors
title Understanding Long-Term Changes in Microbial Fuel Cell Performance Using Electrochemical Impedance Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Long-Term%20Changes%20in%20Microbial%20Fuel%20Cell%20Performance%20Using%20Electrochemical%20Impedance%20Spectroscopy&rft.jtitle=Environmental%20Science%20&%20Technology&rft.au=Borole,%20Abhijeet%20P&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2010-04-01&rft.volume=44&rft.issue=7&rft.spage=2740&rft.epage=2745&rft.pages=2740-2745&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es9032937&rft_dat=%3Cproquest_osti_%3E733157796%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=89147543&rft_id=info:pmid/20222678&rfr_iscdi=true