Assay-Dependent Phytotoxicity of Nanoparticles to Plants
The effects of five nanomaterials (multiwalled carbon nanotubes [MWCNTs], Ag, Cu, ZnO, Si) and their corresponding bulk counterparts on seed germination, root elongation, and biomass of Cucurbita pepo (zucchini) were investigated. The plants were grown in hydroponic solutions amended with nanopartic...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2009-12, Vol.43 (24), p.9473-9479 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9479 |
---|---|
container_issue | 24 |
container_start_page | 9473 |
container_title | Environmental science & technology |
container_volume | 43 |
creator | Stampoulis, Dimitrios Sinha, Saion K White, Jason C |
description | The effects of five nanomaterials (multiwalled carbon nanotubes [MWCNTs], Ag, Cu, ZnO, Si) and their corresponding bulk counterparts on seed germination, root elongation, and biomass of Cucurbita pepo (zucchini) were investigated. The plants were grown in hydroponic solutions amended with nanoparticles or bulk material suspensions at 1000 mg/L. Seed germination was unaffected by any of the treatments, but Cu nanoparticles reduced emerging root length by 77% and 64% relative to unamended controls and seeds exposed to bulk Cu powder, respectively. During a 15-day hydroponic trial, the biomass of plants exposed to MWCNTs and Ag nanoparticles was reduced by 60% and 75%, respectively, as compared to control plants and corresponding bulk carbon and Ag powder solutions. Although bulk Cu powder reduced biomass by 69%, Cu nanoparticle exposure resulted in 90% reduction relative to control plants. Both Ag and Cu ion controls (1−1000 mg/L) and supernatant from centrifuged nanoparticle solutions (1000 mg/L) indicate that half the observed phytotoxicity is from the elemental nanoparticles themselves. The biomass and transpiration volume of zucchini exposed to Ag nanoparticles or bulk powder at 0−1000 mg/mL for 17 days was measured. Exposure to Ag nanoparticles at 500 and 100 mg/L resulted in 57% and 41% decreases in plant biomass and transpiration, respectively, as compared to controls or to plants exposed to bulk Ag. On average, zucchini shoots exposed to Ag nanoparticles contained 4.7 greater Ag concentration than did the plants from the corresponding bulk solutions. These findings demonstrate that standard phytotoxicity tests such as germination and root elongation may not be sensitive enough or appropriate when evaluating nanoparticle toxicity to terrestrial plant species. |
doi_str_mv | 10.1021/es901695c |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754542422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>754542422</sourcerecordid><originalsourceid>FETCH-LOGICAL-a443t-c128321692c2fb1afc7ea4a82353e73232997bdb884e9334e898da8c1b6a368d3</originalsourceid><addsrcrecordid>eNpl0MtKw0AUBuBBFFsvC19AgiDiIjrXZGZZ6hWKdqHgLkwmE0xJMzFnAubtHWloQVdn83HOf36Ezgi-IZiSWwsKk0QJs4emRFAcCynIPppiTFisWPIxQUcAK4wxZVgeoglRinKp0imSMwA9xHe2tU1hGx8tPwfvvPuuTOWHyJXRi25cqztfmdpC5F20rHXj4QQdlLoGezrOY_T-cP82f4oXr4_P89ki1pwzHxtCJaMhHDW0zIkuTWo115IywWzKKKNKpXmRS8mtYoxbqWShpSF5olkiC3aMrjZ728599RZ8tq7A2DqEsK6HLBVccMopDfLij1y5vmtCuCy8TbggKQ_oeoNM5wA6W2ZtV611N2QEZ79lZtsygz0fF_b52hY7ObYXwOUINBhdl51uTAVbR0OohBCxc9rALtT_gz_yU4Yn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230145174</pqid></control><display><type>article</type><title>Assay-Dependent Phytotoxicity of Nanoparticles to Plants</title><source>ACS Publications</source><source>MEDLINE</source><creator>Stampoulis, Dimitrios ; Sinha, Saion K ; White, Jason C</creator><creatorcontrib>Stampoulis, Dimitrios ; Sinha, Saion K ; White, Jason C</creatorcontrib><description>The effects of five nanomaterials (multiwalled carbon nanotubes [MWCNTs], Ag, Cu, ZnO, Si) and their corresponding bulk counterparts on seed germination, root elongation, and biomass of Cucurbita pepo (zucchini) were investigated. The plants were grown in hydroponic solutions amended with nanoparticles or bulk material suspensions at 1000 mg/L. Seed germination was unaffected by any of the treatments, but Cu nanoparticles reduced emerging root length by 77% and 64% relative to unamended controls and seeds exposed to bulk Cu powder, respectively. During a 15-day hydroponic trial, the biomass of plants exposed to MWCNTs and Ag nanoparticles was reduced by 60% and 75%, respectively, as compared to control plants and corresponding bulk carbon and Ag powder solutions. Although bulk Cu powder reduced biomass by 69%, Cu nanoparticle exposure resulted in 90% reduction relative to control plants. Both Ag and Cu ion controls (1−1000 mg/L) and supernatant from centrifuged nanoparticle solutions (1000 mg/L) indicate that half the observed phytotoxicity is from the elemental nanoparticles themselves. The biomass and transpiration volume of zucchini exposed to Ag nanoparticles or bulk powder at 0−1000 mg/mL for 17 days was measured. Exposure to Ag nanoparticles at 500 and 100 mg/L resulted in 57% and 41% decreases in plant biomass and transpiration, respectively, as compared to controls or to plants exposed to bulk Ag. On average, zucchini shoots exposed to Ag nanoparticles contained 4.7 greater Ag concentration than did the plants from the corresponding bulk solutions. These findings demonstrate that standard phytotoxicity tests such as germination and root elongation may not be sensitive enough or appropriate when evaluating nanoparticle toxicity to terrestrial plant species.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es901695c</identifier><identifier>PMID: 19924897</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Agriculture - methods ; Animal, plant and microbial ecology ; Applied ecology ; Applied sciences ; Biological and medical sciences ; Biological Assay - methods ; Biomass ; Copper ; Copper - toxicity ; Crops, Agricultural ; Cucurbita - anatomy & histology ; Cucurbita - drug effects ; Cucurbita - physiology ; Cucurbita pepo ; Dose-Response Relationship, Drug ; Ecotoxicology and Human Environmental Health ; Ecotoxicology, biological effects of pollution ; Exact sciences and technology ; Food Chain ; Food Contamination ; Fundamental and applied biological sciences. Psychology ; Germination ; Germination - drug effects ; Humans ; Nanoparticles ; Nanoparticles - chemistry ; Nanoparticles - toxicity ; Nanotubes, Carbon - toxicity ; Phytotoxicity ; Plant Roots - drug effects ; Pollution ; Seeds ; Silicon - toxicity ; Silver - toxicity ; Toxicity ; Vegetables ; Zinc Oxide - toxicity</subject><ispartof>Environmental science & technology, 2009-12, Vol.43 (24), p.9473-9479</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Dec 15, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a443t-c128321692c2fb1afc7ea4a82353e73232997bdb884e9334e898da8c1b6a368d3</citedby><cites>FETCH-LOGICAL-a443t-c128321692c2fb1afc7ea4a82353e73232997bdb884e9334e898da8c1b6a368d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es901695c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es901695c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22236115$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19924897$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stampoulis, Dimitrios</creatorcontrib><creatorcontrib>Sinha, Saion K</creatorcontrib><creatorcontrib>White, Jason C</creatorcontrib><title>Assay-Dependent Phytotoxicity of Nanoparticles to Plants</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The effects of five nanomaterials (multiwalled carbon nanotubes [MWCNTs], Ag, Cu, ZnO, Si) and their corresponding bulk counterparts on seed germination, root elongation, and biomass of Cucurbita pepo (zucchini) were investigated. The plants were grown in hydroponic solutions amended with nanoparticles or bulk material suspensions at 1000 mg/L. Seed germination was unaffected by any of the treatments, but Cu nanoparticles reduced emerging root length by 77% and 64% relative to unamended controls and seeds exposed to bulk Cu powder, respectively. During a 15-day hydroponic trial, the biomass of plants exposed to MWCNTs and Ag nanoparticles was reduced by 60% and 75%, respectively, as compared to control plants and corresponding bulk carbon and Ag powder solutions. Although bulk Cu powder reduced biomass by 69%, Cu nanoparticle exposure resulted in 90% reduction relative to control plants. Both Ag and Cu ion controls (1−1000 mg/L) and supernatant from centrifuged nanoparticle solutions (1000 mg/L) indicate that half the observed phytotoxicity is from the elemental nanoparticles themselves. The biomass and transpiration volume of zucchini exposed to Ag nanoparticles or bulk powder at 0−1000 mg/mL for 17 days was measured. Exposure to Ag nanoparticles at 500 and 100 mg/L resulted in 57% and 41% decreases in plant biomass and transpiration, respectively, as compared to controls or to plants exposed to bulk Ag. On average, zucchini shoots exposed to Ag nanoparticles contained 4.7 greater Ag concentration than did the plants from the corresponding bulk solutions. These findings demonstrate that standard phytotoxicity tests such as germination and root elongation may not be sensitive enough or appropriate when evaluating nanoparticle toxicity to terrestrial plant species.</description><subject>Agriculture - methods</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Biological Assay - methods</subject><subject>Biomass</subject><subject>Copper</subject><subject>Copper - toxicity</subject><subject>Crops, Agricultural</subject><subject>Cucurbita - anatomy & histology</subject><subject>Cucurbita - drug effects</subject><subject>Cucurbita - physiology</subject><subject>Cucurbita pepo</subject><subject>Dose-Response Relationship, Drug</subject><subject>Ecotoxicology and Human Environmental Health</subject><subject>Ecotoxicology, biological effects of pollution</subject><subject>Exact sciences and technology</subject><subject>Food Chain</subject><subject>Food Contamination</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Germination</subject><subject>Germination - drug effects</subject><subject>Humans</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - toxicity</subject><subject>Nanotubes, Carbon - toxicity</subject><subject>Phytotoxicity</subject><subject>Plant Roots - drug effects</subject><subject>Pollution</subject><subject>Seeds</subject><subject>Silicon - toxicity</subject><subject>Silver - toxicity</subject><subject>Toxicity</subject><subject>Vegetables</subject><subject>Zinc Oxide - toxicity</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0MtKw0AUBuBBFFsvC19AgiDiIjrXZGZZ6hWKdqHgLkwmE0xJMzFnAubtHWloQVdn83HOf36Ezgi-IZiSWwsKk0QJs4emRFAcCynIPppiTFisWPIxQUcAK4wxZVgeoglRinKp0imSMwA9xHe2tU1hGx8tPwfvvPuuTOWHyJXRi25cqztfmdpC5F20rHXj4QQdlLoGezrOY_T-cP82f4oXr4_P89ki1pwzHxtCJaMhHDW0zIkuTWo115IywWzKKKNKpXmRS8mtYoxbqWShpSF5olkiC3aMrjZ728599RZ8tq7A2DqEsK6HLBVccMopDfLij1y5vmtCuCy8TbggKQ_oeoNM5wA6W2ZtV611N2QEZ79lZtsygz0fF_b52hY7ObYXwOUINBhdl51uTAVbR0OohBCxc9rALtT_gz_yU4Yn</recordid><startdate>20091215</startdate><enddate>20091215</enddate><creator>Stampoulis, Dimitrios</creator><creator>Sinha, Saion K</creator><creator>White, Jason C</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7TV</scope></search><sort><creationdate>20091215</creationdate><title>Assay-Dependent Phytotoxicity of Nanoparticles to Plants</title><author>Stampoulis, Dimitrios ; Sinha, Saion K ; White, Jason C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a443t-c128321692c2fb1afc7ea4a82353e73232997bdb884e9334e898da8c1b6a368d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Agriculture - methods</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Biological Assay - methods</topic><topic>Biomass</topic><topic>Copper</topic><topic>Copper - toxicity</topic><topic>Crops, Agricultural</topic><topic>Cucurbita - anatomy & histology</topic><topic>Cucurbita - drug effects</topic><topic>Cucurbita - physiology</topic><topic>Cucurbita pepo</topic><topic>Dose-Response Relationship, Drug</topic><topic>Ecotoxicology and Human Environmental Health</topic><topic>Ecotoxicology, biological effects of pollution</topic><topic>Exact sciences and technology</topic><topic>Food Chain</topic><topic>Food Contamination</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Germination</topic><topic>Germination - drug effects</topic><topic>Humans</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - toxicity</topic><topic>Nanotubes, Carbon - toxicity</topic><topic>Phytotoxicity</topic><topic>Plant Roots - drug effects</topic><topic>Pollution</topic><topic>Seeds</topic><topic>Silicon - toxicity</topic><topic>Silver - toxicity</topic><topic>Toxicity</topic><topic>Vegetables</topic><topic>Zinc Oxide - toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stampoulis, Dimitrios</creatorcontrib><creatorcontrib>Sinha, Saion K</creatorcontrib><creatorcontrib>White, Jason C</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stampoulis, Dimitrios</au><au>Sinha, Saion K</au><au>White, Jason C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assay-Dependent Phytotoxicity of Nanoparticles to Plants</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2009-12-15</date><risdate>2009</risdate><volume>43</volume><issue>24</issue><spage>9473</spage><epage>9479</epage><pages>9473-9479</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>The effects of five nanomaterials (multiwalled carbon nanotubes [MWCNTs], Ag, Cu, ZnO, Si) and their corresponding bulk counterparts on seed germination, root elongation, and biomass of Cucurbita pepo (zucchini) were investigated. The plants were grown in hydroponic solutions amended with nanoparticles or bulk material suspensions at 1000 mg/L. Seed germination was unaffected by any of the treatments, but Cu nanoparticles reduced emerging root length by 77% and 64% relative to unamended controls and seeds exposed to bulk Cu powder, respectively. During a 15-day hydroponic trial, the biomass of plants exposed to MWCNTs and Ag nanoparticles was reduced by 60% and 75%, respectively, as compared to control plants and corresponding bulk carbon and Ag powder solutions. Although bulk Cu powder reduced biomass by 69%, Cu nanoparticle exposure resulted in 90% reduction relative to control plants. Both Ag and Cu ion controls (1−1000 mg/L) and supernatant from centrifuged nanoparticle solutions (1000 mg/L) indicate that half the observed phytotoxicity is from the elemental nanoparticles themselves. The biomass and transpiration volume of zucchini exposed to Ag nanoparticles or bulk powder at 0−1000 mg/mL for 17 days was measured. Exposure to Ag nanoparticles at 500 and 100 mg/L resulted in 57% and 41% decreases in plant biomass and transpiration, respectively, as compared to controls or to plants exposed to bulk Ag. On average, zucchini shoots exposed to Ag nanoparticles contained 4.7 greater Ag concentration than did the plants from the corresponding bulk solutions. These findings demonstrate that standard phytotoxicity tests such as germination and root elongation may not be sensitive enough or appropriate when evaluating nanoparticle toxicity to terrestrial plant species.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>19924897</pmid><doi>10.1021/es901695c</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2009-12, Vol.43 (24), p.9473-9479 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_754542422 |
source | ACS Publications; MEDLINE |
subjects | Agriculture - methods Animal, plant and microbial ecology Applied ecology Applied sciences Biological and medical sciences Biological Assay - methods Biomass Copper Copper - toxicity Crops, Agricultural Cucurbita - anatomy & histology Cucurbita - drug effects Cucurbita - physiology Cucurbita pepo Dose-Response Relationship, Drug Ecotoxicology and Human Environmental Health Ecotoxicology, biological effects of pollution Exact sciences and technology Food Chain Food Contamination Fundamental and applied biological sciences. Psychology Germination Germination - drug effects Humans Nanoparticles Nanoparticles - chemistry Nanoparticles - toxicity Nanotubes, Carbon - toxicity Phytotoxicity Plant Roots - drug effects Pollution Seeds Silicon - toxicity Silver - toxicity Toxicity Vegetables Zinc Oxide - toxicity |
title | Assay-Dependent Phytotoxicity of Nanoparticles to Plants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assay-Dependent%20Phytotoxicity%20of%20Nanoparticles%20to%20Plants&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Stampoulis,%20Dimitrios&rft.date=2009-12-15&rft.volume=43&rft.issue=24&rft.spage=9473&rft.epage=9479&rft.pages=9473-9479&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es901695c&rft_dat=%3Cproquest_cross%3E754542422%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230145174&rft_id=info:pmid/19924897&rfr_iscdi=true |