Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

Few integrated analysis models examine significant U.S. transportation greenhouse gas emission reductions within an integrated energy system. Our analysis, using a bottom-up MARKet ALocation (MARKAL) model, found that stringent system-wide CO2 reduction targets will be required to achieve significan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2008-11, Vol.42 (22), p.8202-8210
Hauptverfasser: Yeh, Sonia, Farrell, Alex, Plevin, Richard, Sanstad, Alan, Weyant, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8210
container_issue 22
container_start_page 8202
container_title Environmental science & technology
container_volume 42
creator Yeh, Sonia
Farrell, Alex
Plevin, Richard
Sanstad, Alan
Weyant, John
description Few integrated analysis models examine significant U.S. transportation greenhouse gas emission reductions within an integrated energy system. Our analysis, using a bottom-up MARKet ALocation (MARKAL) model, found that stringent system-wide CO2 reduction targets will be required to achieve significant CO2 reductions from the transportation sector. Mitigating transportation emission reductions can result in significant changes in personal vehicle technologies, increases in vehicle fuel efficiency, and decreases in overall transportation fuel use. We analyze policy-oriented mitigation strategies and suggest that mitigation policies should be informed by the transitional nature of technology adoptions and the interactions between the mitigation strategies, and the robustness of mitigation strategies to long-term reduction goals, input assumptions, and policy and social factors. More research is needed to help identify robust policies that will achieve the best outcome in the face of uncertainties.
doi_str_mv 10.1021/es8005805
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754541815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1601502631</sourcerecordid><originalsourceid>FETCH-LOGICAL-a541t-c0a1a380c9da435629d8f87adb99d7b85486f51dda7a1a87c2a0ed93271a8ddd3</originalsourceid><addsrcrecordid>eNpl0V2L1DAUBuAgijuuXvgHJAgiXnRMmqZJvdP1E2ZdsTOsd-FMk85kbZuapOD6680yZQb0KoQ8nHPyHoSeUrKkJKevTZCEcEn4PbSgPCcZl5zeRwtCKMsqVv44Q49CuCGE5IzIh-iMVqSUouILFK_GaHv7xw47vFnWS3xpo91BtG7AdfQQzc6agFvncdwbvLK7fczeT_EWrz0MYXQ-ztg00fk3-HoPEV8nacAPuPWux4DfuRhdn21GfOm06R6jBy10wTyZz3O0-fhhffE5W119-nLxdpUBL2jMGgIUmCRNpaFgvMwrLVspQG-rSout5IUsW061BpGgFE0OxOiK5SLdtNbsHL081B29-zWZEFVvQ2O6DgbjpqAEL1IjSXmSz_-RN27yQxpOpchoUZBSJPTqgBrvQvCmVaO3PfhbRYm6W4Q6LiLZZ3PBadsbfZJz8gm8mAGEBro2pdnYcHQ5kWVVsrum2cHZEM3v4zv4nyqNJLhaf6sVq7mgrP6uvp7qQhNOn_h_wL_GP6oM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230144067</pqid></control><display><type>article</type><title>Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Yeh, Sonia ; Farrell, Alex ; Plevin, Richard ; Sanstad, Alan ; Weyant, John</creator><creatorcontrib>Yeh, Sonia ; Farrell, Alex ; Plevin, Richard ; Sanstad, Alan ; Weyant, John</creatorcontrib><description>Few integrated analysis models examine significant U.S. transportation greenhouse gas emission reductions within an integrated energy system. Our analysis, using a bottom-up MARKet ALocation (MARKAL) model, found that stringent system-wide CO2 reduction targets will be required to achieve significant CO2 reductions from the transportation sector. Mitigating transportation emission reductions can result in significant changes in personal vehicle technologies, increases in vehicle fuel efficiency, and decreases in overall transportation fuel use. We analyze policy-oriented mitigation strategies and suggest that mitigation policies should be informed by the transitional nature of technology adoptions and the interactions between the mitigation strategies, and the robustness of mitigation strategies to long-term reduction goals, input assumptions, and policy and social factors. More research is needed to help identify robust policies that will achieve the best outcome in the face of uncertainties.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es8005805</identifier><identifier>PMID: 19068795</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Air Pollutants ; Analysis ; Applied sciences ; Carbon dioxide ; Carbon Dioxide - chemistry ; Emissions ; Environmental policy ; Environmental Restoration and Remediation ; Exact sciences and technology ; Greenhouse Effect ; Greenhouse gases ; Humans ; Models, Theoretical ; Pollution ; Transportation ; Transportation industry ; Vehicle Emissions ; Vehicles ; Waste Management</subject><ispartof>Environmental science &amp; technology, 2008-11, Vol.42 (22), p.8202-8210</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2009 INIST-CNRS</rights><rights>Copyright American Chemical Society Nov 15, 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a541t-c0a1a380c9da435629d8f87adb99d7b85486f51dda7a1a87c2a0ed93271a8ddd3</citedby><cites>FETCH-LOGICAL-a541t-c0a1a380c9da435629d8f87adb99d7b85486f51dda7a1a87c2a0ed93271a8ddd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es8005805$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es8005805$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20869637$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19068795$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeh, Sonia</creatorcontrib><creatorcontrib>Farrell, Alex</creatorcontrib><creatorcontrib>Plevin, Richard</creatorcontrib><creatorcontrib>Sanstad, Alan</creatorcontrib><creatorcontrib>Weyant, John</creatorcontrib><title>Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Few integrated analysis models examine significant U.S. transportation greenhouse gas emission reductions within an integrated energy system. Our analysis, using a bottom-up MARKet ALocation (MARKAL) model, found that stringent system-wide CO2 reduction targets will be required to achieve significant CO2 reductions from the transportation sector. Mitigating transportation emission reductions can result in significant changes in personal vehicle technologies, increases in vehicle fuel efficiency, and decreases in overall transportation fuel use. We analyze policy-oriented mitigation strategies and suggest that mitigation policies should be informed by the transitional nature of technology adoptions and the interactions between the mitigation strategies, and the robustness of mitigation strategies to long-term reduction goals, input assumptions, and policy and social factors. More research is needed to help identify robust policies that will achieve the best outcome in the face of uncertainties.</description><subject>Air Pollutants</subject><subject>Analysis</subject><subject>Applied sciences</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - chemistry</subject><subject>Emissions</subject><subject>Environmental policy</subject><subject>Environmental Restoration and Remediation</subject><subject>Exact sciences and technology</subject><subject>Greenhouse Effect</subject><subject>Greenhouse gases</subject><subject>Humans</subject><subject>Models, Theoretical</subject><subject>Pollution</subject><subject>Transportation</subject><subject>Transportation industry</subject><subject>Vehicle Emissions</subject><subject>Vehicles</subject><subject>Waste Management</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0V2L1DAUBuAgijuuXvgHJAgiXnRMmqZJvdP1E2ZdsTOsd-FMk85kbZuapOD6680yZQb0KoQ8nHPyHoSeUrKkJKevTZCEcEn4PbSgPCcZl5zeRwtCKMsqVv44Q49CuCGE5IzIh-iMVqSUouILFK_GaHv7xw47vFnWS3xpo91BtG7AdfQQzc6agFvncdwbvLK7fczeT_EWrz0MYXQ-ztg00fk3-HoPEV8nacAPuPWux4DfuRhdn21GfOm06R6jBy10wTyZz3O0-fhhffE5W119-nLxdpUBL2jMGgIUmCRNpaFgvMwrLVspQG-rSout5IUsW061BpGgFE0OxOiK5SLdtNbsHL081B29-zWZEFVvQ2O6DgbjpqAEL1IjSXmSz_-RN27yQxpOpchoUZBSJPTqgBrvQvCmVaO3PfhbRYm6W4Q6LiLZZ3PBadsbfZJz8gm8mAGEBro2pdnYcHQ5kWVVsrum2cHZEM3v4zv4nyqNJLhaf6sVq7mgrP6uvp7qQhNOn_h_wL_GP6oM</recordid><startdate>20081115</startdate><enddate>20081115</enddate><creator>Yeh, Sonia</creator><creator>Farrell, Alex</creator><creator>Plevin, Richard</creator><creator>Sanstad, Alan</creator><creator>Weyant, John</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7TV</scope></search><sort><creationdate>20081115</creationdate><title>Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model</title><author>Yeh, Sonia ; Farrell, Alex ; Plevin, Richard ; Sanstad, Alan ; Weyant, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a541t-c0a1a380c9da435629d8f87adb99d7b85486f51dda7a1a87c2a0ed93271a8ddd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Air Pollutants</topic><topic>Analysis</topic><topic>Applied sciences</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - chemistry</topic><topic>Emissions</topic><topic>Environmental policy</topic><topic>Environmental Restoration and Remediation</topic><topic>Exact sciences and technology</topic><topic>Greenhouse Effect</topic><topic>Greenhouse gases</topic><topic>Humans</topic><topic>Models, Theoretical</topic><topic>Pollution</topic><topic>Transportation</topic><topic>Transportation industry</topic><topic>Vehicle Emissions</topic><topic>Vehicles</topic><topic>Waste Management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeh, Sonia</creatorcontrib><creatorcontrib>Farrell, Alex</creatorcontrib><creatorcontrib>Plevin, Richard</creatorcontrib><creatorcontrib>Sanstad, Alan</creatorcontrib><creatorcontrib>Weyant, John</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeh, Sonia</au><au>Farrell, Alex</au><au>Plevin, Richard</au><au>Sanstad, Alan</au><au>Weyant, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2008-11-15</date><risdate>2008</risdate><volume>42</volume><issue>22</issue><spage>8202</spage><epage>8210</epage><pages>8202-8210</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Few integrated analysis models examine significant U.S. transportation greenhouse gas emission reductions within an integrated energy system. Our analysis, using a bottom-up MARKet ALocation (MARKAL) model, found that stringent system-wide CO2 reduction targets will be required to achieve significant CO2 reductions from the transportation sector. Mitigating transportation emission reductions can result in significant changes in personal vehicle technologies, increases in vehicle fuel efficiency, and decreases in overall transportation fuel use. We analyze policy-oriented mitigation strategies and suggest that mitigation policies should be informed by the transitional nature of technology adoptions and the interactions between the mitigation strategies, and the robustness of mitigation strategies to long-term reduction goals, input assumptions, and policy and social factors. More research is needed to help identify robust policies that will achieve the best outcome in the face of uncertainties.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>19068795</pmid><doi>10.1021/es8005805</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2008-11, Vol.42 (22), p.8202-8210
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_754541815
source MEDLINE; American Chemical Society Journals
subjects Air Pollutants
Analysis
Applied sciences
Carbon dioxide
Carbon Dioxide - chemistry
Emissions
Environmental policy
Environmental Restoration and Remediation
Exact sciences and technology
Greenhouse Effect
Greenhouse gases
Humans
Models, Theoretical
Pollution
Transportation
Transportation industry
Vehicle Emissions
Vehicles
Waste Management
title Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20U.S.%20Mitigation%20Strategies%20for%20the%20Light-Duty%20Transportation%20Sector:%20What%20We%20Learn%20from%20a%20Bottom-Up%20Model&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Yeh,%20Sonia&rft.date=2008-11-15&rft.volume=42&rft.issue=22&rft.spage=8202&rft.epage=8210&rft.pages=8202-8210&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es8005805&rft_dat=%3Cproquest_cross%3E1601502631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230144067&rft_id=info:pmid/19068795&rfr_iscdi=true