In vitro biocompatibility of titanium alloy discs made using direct metal fabrication

Abstract Custom orthopedic implants may be generated using free-form fabrication methods (FFF) such as electron beam melting (EBM). EBM FFF may be used to make solid metal implants whose surface is often polished using CNC machining and porous scaffolds that are usually left unpolished. We assessed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical engineering & physics 2010-07, Vol.32 (6), p.645-652
Hauptverfasser: Haslauer, Carla Maria, Springer, Jessica Collins, Harrysson, Ola L.A, Loboa, Elizabeth G, Monteiro-Riviere, Nancy A, Marcellin-Little, Denis J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 652
container_issue 6
container_start_page 645
container_title Medical engineering & physics
container_volume 32
creator Haslauer, Carla Maria
Springer, Jessica Collins
Harrysson, Ola L.A
Loboa, Elizabeth G
Monteiro-Riviere, Nancy A
Marcellin-Little, Denis J
description Abstract Custom orthopedic implants may be generated using free-form fabrication methods (FFF) such as electron beam melting (EBM). EBM FFF may be used to make solid metal implants whose surface is often polished using CNC machining and porous scaffolds that are usually left unpolished. We assessed the in vitro biocompatibility of EBM titanium–6 aluminum–4 vanadium (Ti6Al4V) structures by comparing the cellular response to solid polished, solid unpolished, and porous EBM discs to the cellular response to discs made of commercially produced Ti6Al4V. The discs were seeded with 20,000 human adipose-derived adult stem cells (hASCs) and assessed for cell viability, proliferation, and release of the proinflammatory cytokines interleukin-6 (IL-6) and interleukin-8 (IL-8). Cell viability was assessed with Live/Dead staining 8 days after seeding. Cell proliferation was assessed using alamarBlue assays at days 0, 1, 2, 3, and 7. The hASCs were alive on all discs after 8 days. Cellular proliferation on porous EBM discs was increased at days 2, 3, and 7 compared to discs made of commercial Ti6Al4V. Cellular proliferation on porous EBM discs was also increased compared to solid polished and unpolished EBM discs. IL-6 and IL-8 releases at day 7 were lower for porous EBM discs than for other discs. Solid polished, unpolished, and porous EBM Ti6Al4V discs exhibited an acceptable biocompatibility profile compared to solid Ti6Al4V discs from a commercial source. EBM FFF may be considered as an option for the fabrication of custom orthopedic implants.
doi_str_mv 10.1016/j.medengphy.2010.04.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754539044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1350453310000779</els_id><sourcerecordid>733960817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-6442dcf669cbb283b95d7a0feeaeb7dd3887a869a03427236eb6680f451d9c8b3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqXwFyAXxGmXcez444JUVQUqVeIAPVu2MyleHHuxk0r593i1S5G4wMmj0fOOZ96ZpnlDYEuA8Pe77YQDxvv993XbQc0C2wLQJ805kYJuGFB4WmPaw4b1lJ41L0rZAQBjnD5vzroaCNnz8-buJrYPfs6ptT65NO3N7K0Pfl7bNLazn030y9SaENLaDr640k5mwHYpPt7XREY3txPOJrSjsdm7qk_xZfNsNKHgq9N70dx9vP529Xlz--XTzdXl7cYxKeYNZ6wb3Mi5ctZ2klrVD8LAiGjQimGgUgojuTJAWSc6ytFyLmFkPRmUk5ZeNO-Odfc5_VywzHqqLWIIJmJaihZ9nV7VYf9NUqo4SCIqKY6ky6mUjKPeZz-ZvGoC-mC-3ulH8_XBfA1MV_Or8vXpj8VW4lH32-0KvD0BpjgTxmyi8-UP1ynVK6Iqd3nksHr34DHr4jxGh0e_9ZD8fzTz4a8aLvhY9xN-4Ipll5Yc62o00aXToL8ebuVwKqReCQih6C9Akrw5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733960817</pqid></control><display><type>article</type><title>In vitro biocompatibility of titanium alloy discs made using direct metal fabrication</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Haslauer, Carla Maria ; Springer, Jessica Collins ; Harrysson, Ola L.A ; Loboa, Elizabeth G ; Monteiro-Riviere, Nancy A ; Marcellin-Little, Denis J</creator><creatorcontrib>Haslauer, Carla Maria ; Springer, Jessica Collins ; Harrysson, Ola L.A ; Loboa, Elizabeth G ; Monteiro-Riviere, Nancy A ; Marcellin-Little, Denis J</creatorcontrib><description>Abstract Custom orthopedic implants may be generated using free-form fabrication methods (FFF) such as electron beam melting (EBM). EBM FFF may be used to make solid metal implants whose surface is often polished using CNC machining and porous scaffolds that are usually left unpolished. We assessed the in vitro biocompatibility of EBM titanium–6 aluminum–4 vanadium (Ti6Al4V) structures by comparing the cellular response to solid polished, solid unpolished, and porous EBM discs to the cellular response to discs made of commercially produced Ti6Al4V. The discs were seeded with 20,000 human adipose-derived adult stem cells (hASCs) and assessed for cell viability, proliferation, and release of the proinflammatory cytokines interleukin-6 (IL-6) and interleukin-8 (IL-8). Cell viability was assessed with Live/Dead staining 8 days after seeding. Cell proliferation was assessed using alamarBlue assays at days 0, 1, 2, 3, and 7. The hASCs were alive on all discs after 8 days. Cellular proliferation on porous EBM discs was increased at days 2, 3, and 7 compared to discs made of commercial Ti6Al4V. Cellular proliferation on porous EBM discs was also increased compared to solid polished and unpolished EBM discs. IL-6 and IL-8 releases at day 7 were lower for porous EBM discs than for other discs. Solid polished, unpolished, and porous EBM Ti6Al4V discs exhibited an acceptable biocompatibility profile compared to solid Ti6Al4V discs from a commercial source. EBM FFF may be considered as an option for the fabrication of custom orthopedic implants.</description><identifier>ISSN: 1350-4533</identifier><identifier>EISSN: 1873-4030</identifier><identifier>DOI: 10.1016/j.medengphy.2010.04.003</identifier><identifier>PMID: 20447856</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Adipose Tissue - cytology ; Alloys - chemical synthesis ; Alloys - chemistry ; Alloys - pharmacology ; Aluminum - chemistry ; Biocompatibility ; Biological and medical sciences ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Direct metal fabrication ; Electron beam melting ; Female ; Free-form fabrication ; Human stem cell ; Humans ; Interleukin-6 - secretion ; Interleukin-8 - secretion ; Materials Testing - methods ; Medical sciences ; Middle Aged ; Orthopedic implant ; Orthopedic surgery ; Radiology ; Stem cell ; Stem Cells - cytology ; Stem Cells - drug effects ; Stem Cells - secretion ; Surface Properties ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; Titanium - chemistry ; Titanium - pharmacology ; Vanadium - chemistry</subject><ispartof>Medical engineering &amp; physics, 2010-07, Vol.32 (6), p.645-652</ispartof><rights>IPEM</rights><rights>2010 IPEM</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 IPEM. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-6442dcf669cbb283b95d7a0feeaeb7dd3887a869a03427236eb6680f451d9c8b3</citedby><cites>FETCH-LOGICAL-c487t-6442dcf669cbb283b95d7a0feeaeb7dd3887a869a03427236eb6680f451d9c8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.medengphy.2010.04.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22995919$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20447856$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haslauer, Carla Maria</creatorcontrib><creatorcontrib>Springer, Jessica Collins</creatorcontrib><creatorcontrib>Harrysson, Ola L.A</creatorcontrib><creatorcontrib>Loboa, Elizabeth G</creatorcontrib><creatorcontrib>Monteiro-Riviere, Nancy A</creatorcontrib><creatorcontrib>Marcellin-Little, Denis J</creatorcontrib><title>In vitro biocompatibility of titanium alloy discs made using direct metal fabrication</title><title>Medical engineering &amp; physics</title><addtitle>Med Eng Phys</addtitle><description>Abstract Custom orthopedic implants may be generated using free-form fabrication methods (FFF) such as electron beam melting (EBM). EBM FFF may be used to make solid metal implants whose surface is often polished using CNC machining and porous scaffolds that are usually left unpolished. We assessed the in vitro biocompatibility of EBM titanium–6 aluminum–4 vanadium (Ti6Al4V) structures by comparing the cellular response to solid polished, solid unpolished, and porous EBM discs to the cellular response to discs made of commercially produced Ti6Al4V. The discs were seeded with 20,000 human adipose-derived adult stem cells (hASCs) and assessed for cell viability, proliferation, and release of the proinflammatory cytokines interleukin-6 (IL-6) and interleukin-8 (IL-8). Cell viability was assessed with Live/Dead staining 8 days after seeding. Cell proliferation was assessed using alamarBlue assays at days 0, 1, 2, 3, and 7. The hASCs were alive on all discs after 8 days. Cellular proliferation on porous EBM discs was increased at days 2, 3, and 7 compared to discs made of commercial Ti6Al4V. Cellular proliferation on porous EBM discs was also increased compared to solid polished and unpolished EBM discs. IL-6 and IL-8 releases at day 7 were lower for porous EBM discs than for other discs. Solid polished, unpolished, and porous EBM Ti6Al4V discs exhibited an acceptable biocompatibility profile compared to solid Ti6Al4V discs from a commercial source. EBM FFF may be considered as an option for the fabrication of custom orthopedic implants.</description><subject>Adipose Tissue - cytology</subject><subject>Alloys - chemical synthesis</subject><subject>Alloys - chemistry</subject><subject>Alloys - pharmacology</subject><subject>Aluminum - chemistry</subject><subject>Biocompatibility</subject><subject>Biological and medical sciences</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Direct metal fabrication</subject><subject>Electron beam melting</subject><subject>Female</subject><subject>Free-form fabrication</subject><subject>Human stem cell</subject><subject>Humans</subject><subject>Interleukin-6 - secretion</subject><subject>Interleukin-8 - secretion</subject><subject>Materials Testing - methods</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Orthopedic implant</subject><subject>Orthopedic surgery</subject><subject>Radiology</subject><subject>Stem cell</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - drug effects</subject><subject>Stem Cells - secretion</subject><subject>Surface Properties</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Titanium - chemistry</subject><subject>Titanium - pharmacology</subject><subject>Vanadium - chemistry</subject><issn>1350-4533</issn><issn>1873-4030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk1v1DAQhiMEoqXwFyAXxGmXcez444JUVQUqVeIAPVu2MyleHHuxk0r593i1S5G4wMmj0fOOZ96ZpnlDYEuA8Pe77YQDxvv993XbQc0C2wLQJ805kYJuGFB4WmPaw4b1lJ41L0rZAQBjnD5vzroaCNnz8-buJrYPfs6ptT65NO3N7K0Pfl7bNLazn030y9SaENLaDr640k5mwHYpPt7XREY3txPOJrSjsdm7qk_xZfNsNKHgq9N70dx9vP529Xlz--XTzdXl7cYxKeYNZ6wb3Mi5ctZ2klrVD8LAiGjQimGgUgojuTJAWSc6ytFyLmFkPRmUk5ZeNO-Odfc5_VywzHqqLWIIJmJaihZ9nV7VYf9NUqo4SCIqKY6ky6mUjKPeZz-ZvGoC-mC-3ulH8_XBfA1MV_Or8vXpj8VW4lH32-0KvD0BpjgTxmyi8-UP1ynVK6Iqd3nksHr34DHr4jxGh0e_9ZD8fzTz4a8aLvhY9xN-4Ipll5Yc62o00aXToL8ebuVwKqReCQih6C9Akrw5</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Haslauer, Carla Maria</creator><creator>Springer, Jessica Collins</creator><creator>Harrysson, Ola L.A</creator><creator>Loboa, Elizabeth G</creator><creator>Monteiro-Riviere, Nancy A</creator><creator>Marcellin-Little, Denis J</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20100701</creationdate><title>In vitro biocompatibility of titanium alloy discs made using direct metal fabrication</title><author>Haslauer, Carla Maria ; Springer, Jessica Collins ; Harrysson, Ola L.A ; Loboa, Elizabeth G ; Monteiro-Riviere, Nancy A ; Marcellin-Little, Denis J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-6442dcf669cbb283b95d7a0feeaeb7dd3887a869a03427236eb6680f451d9c8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adipose Tissue - cytology</topic><topic>Alloys - chemical synthesis</topic><topic>Alloys - chemistry</topic><topic>Alloys - pharmacology</topic><topic>Aluminum - chemistry</topic><topic>Biocompatibility</topic><topic>Biological and medical sciences</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Direct metal fabrication</topic><topic>Electron beam melting</topic><topic>Female</topic><topic>Free-form fabrication</topic><topic>Human stem cell</topic><topic>Humans</topic><topic>Interleukin-6 - secretion</topic><topic>Interleukin-8 - secretion</topic><topic>Materials Testing - methods</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Orthopedic implant</topic><topic>Orthopedic surgery</topic><topic>Radiology</topic><topic>Stem cell</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - drug effects</topic><topic>Stem Cells - secretion</topic><topic>Surface Properties</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Titanium - chemistry</topic><topic>Titanium - pharmacology</topic><topic>Vanadium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haslauer, Carla Maria</creatorcontrib><creatorcontrib>Springer, Jessica Collins</creatorcontrib><creatorcontrib>Harrysson, Ola L.A</creatorcontrib><creatorcontrib>Loboa, Elizabeth G</creatorcontrib><creatorcontrib>Monteiro-Riviere, Nancy A</creatorcontrib><creatorcontrib>Marcellin-Little, Denis J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Medical engineering &amp; physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haslauer, Carla Maria</au><au>Springer, Jessica Collins</au><au>Harrysson, Ola L.A</au><au>Loboa, Elizabeth G</au><au>Monteiro-Riviere, Nancy A</au><au>Marcellin-Little, Denis J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro biocompatibility of titanium alloy discs made using direct metal fabrication</atitle><jtitle>Medical engineering &amp; physics</jtitle><addtitle>Med Eng Phys</addtitle><date>2010-07-01</date><risdate>2010</risdate><volume>32</volume><issue>6</issue><spage>645</spage><epage>652</epage><pages>645-652</pages><issn>1350-4533</issn><eissn>1873-4030</eissn><abstract>Abstract Custom orthopedic implants may be generated using free-form fabrication methods (FFF) such as electron beam melting (EBM). EBM FFF may be used to make solid metal implants whose surface is often polished using CNC machining and porous scaffolds that are usually left unpolished. We assessed the in vitro biocompatibility of EBM titanium–6 aluminum–4 vanadium (Ti6Al4V) structures by comparing the cellular response to solid polished, solid unpolished, and porous EBM discs to the cellular response to discs made of commercially produced Ti6Al4V. The discs were seeded with 20,000 human adipose-derived adult stem cells (hASCs) and assessed for cell viability, proliferation, and release of the proinflammatory cytokines interleukin-6 (IL-6) and interleukin-8 (IL-8). Cell viability was assessed with Live/Dead staining 8 days after seeding. Cell proliferation was assessed using alamarBlue assays at days 0, 1, 2, 3, and 7. The hASCs were alive on all discs after 8 days. Cellular proliferation on porous EBM discs was increased at days 2, 3, and 7 compared to discs made of commercial Ti6Al4V. Cellular proliferation on porous EBM discs was also increased compared to solid polished and unpolished EBM discs. IL-6 and IL-8 releases at day 7 were lower for porous EBM discs than for other discs. Solid polished, unpolished, and porous EBM Ti6Al4V discs exhibited an acceptable biocompatibility profile compared to solid Ti6Al4V discs from a commercial source. EBM FFF may be considered as an option for the fabrication of custom orthopedic implants.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>20447856</pmid><doi>10.1016/j.medengphy.2010.04.003</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1350-4533
ispartof Medical engineering & physics, 2010-07, Vol.32 (6), p.645-652
issn 1350-4533
1873-4030
language eng
recordid cdi_proquest_miscellaneous_754539044
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Adipose Tissue - cytology
Alloys - chemical synthesis
Alloys - chemistry
Alloys - pharmacology
Aluminum - chemistry
Biocompatibility
Biological and medical sciences
Cell Proliferation - drug effects
Cell Survival - drug effects
Direct metal fabrication
Electron beam melting
Female
Free-form fabrication
Human stem cell
Humans
Interleukin-6 - secretion
Interleukin-8 - secretion
Materials Testing - methods
Medical sciences
Middle Aged
Orthopedic implant
Orthopedic surgery
Radiology
Stem cell
Stem Cells - cytology
Stem Cells - drug effects
Stem Cells - secretion
Surface Properties
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology. Biomaterials. Equipments
Titanium - chemistry
Titanium - pharmacology
Vanadium - chemistry
title In vitro biocompatibility of titanium alloy discs made using direct metal fabrication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T00%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20biocompatibility%20of%20titanium%20alloy%20discs%20made%20using%20direct%20metal%20fabrication&rft.jtitle=Medical%20engineering%20&%20physics&rft.au=Haslauer,%20Carla%20Maria&rft.date=2010-07-01&rft.volume=32&rft.issue=6&rft.spage=645&rft.epage=652&rft.pages=645-652&rft.issn=1350-4533&rft.eissn=1873-4030&rft_id=info:doi/10.1016/j.medengphy.2010.04.003&rft_dat=%3Cproquest_cross%3E733960817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733960817&rft_id=info:pmid/20447856&rft_els_id=S1350453310000779&rfr_iscdi=true