Reorganization of columnar architecture in the growing visual cortex

Many cortical areas increase in size considerably during postnatal development, progressively displacing neuronal cell bodies from each other. At present, little is known about how cortical growth affects the development of neuronal circuits. Here, in acute and chronic experiments, we study the layo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2010-07, Vol.107 (27), p.12293-12298
Hauptverfasser: Keil, Wolfgang, Schmidt, Karl-Friedrich, Löwel, Siegrid, Kaschube, Matthias, Stevens, Charles F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12298
container_issue 27
container_start_page 12293
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Keil, Wolfgang
Schmidt, Karl-Friedrich
Löwel, Siegrid
Kaschube, Matthias
Stevens, Charles F.
description Many cortical areas increase in size considerably during postnatal development, progressively displacing neuronal cell bodies from each other. At present, little is known about how cortical growth affects the development of neuronal circuits. Here, in acute and chronic experiments, we study the layout of ocular dominance (OD) columns in cat primary visual cortex during a period of substantial postnatal growth. We find that despite a considerable size increase of primary visual cortext, the spacing between columns is largely preserved. In contrast, their spatial arrangement changes systematically over this period. Whereas in young animals columns are more band-like, layouts become more isotropic in mature animals. We propose a novel mechanism of growth-induced reorganization that is based on the "zigzag instability," a dynamical instability observed in several inanimate pattern forming systems. We argue that this mechanism is inherent to a wide class of models for the activity-dependent formation of OD columns. Analyzing one representative of this class, the Elastic Network model, we show that this mechanism can account for the preservation of column spacing and the specific mode of reorganization of OD columns that we observe. We conclude that column width is preserved by systematic reorganization of neuronal selectivities during cortical expansion and that this reorganization is well described by the zigzag instability. Our work suggests that cortical circuits may remain plastic for an extended period in development to facilitate the modification of neuronal circuits to adjust for cortical growth.
doi_str_mv 10.1073/pnas.0913020107
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_754538064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20724243</jstor_id><sourcerecordid>20724243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-7882d55617ad09bc9396b98d8f10e14afee7e784833bb59823d85d1489906f683</originalsourceid><addsrcrecordid>eNqFkkuLFDEURoMoTtu6dqUUblzVzM072QgyPmFAEF2HVFWqO0110iap8fHrTdHtzOjGVUhy7uHmfkHoKYZzDJJeHILN56AxBQL14B5a4bprBdNwH60AiGwVI-wMPcp5BwCaK3iIzghwIZSiK_Tms4tpY4P_ZYuPoYlj08dp3gebGpv6rS-uL3NyjQ9N2bpmk-J3HzbNtc-znSqbivvxGD0Y7ZTdk9O6Rl_fvf1y-aG9-vT-4-Xrq7ZnXJZWKkUGzgWWdgDd9Zpq0Wk1qBGDw8yOzkknFVOUdh3XitBB8QEzpTWIUSi6Rq-O3sPc7d3Qu1CSncwh-b1NP0203vx9E_zWbOK1IRqqRlbBy5MgxW-zy8Xsfe7dNNng4pyN5IxTBYL9n6RUcK7q5NfoxT_kLs4p1DkYAUIrAXTRXRyhPsWckxtvmsZgliTNkqS5TbJWPL_71hv-T3QVaE7AUnmrk4ZIgwnRC_LsiOxyiemOQpL6KSj9DU4urbY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>606986034</pqid></control><display><type>article</type><title>Reorganization of columnar architecture in the growing visual cortex</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Keil, Wolfgang ; Schmidt, Karl-Friedrich ; Löwel, Siegrid ; Kaschube, Matthias ; Stevens, Charles F.</creator><creatorcontrib>Keil, Wolfgang ; Schmidt, Karl-Friedrich ; Löwel, Siegrid ; Kaschube, Matthias ; Stevens, Charles F.</creatorcontrib><description>Many cortical areas increase in size considerably during postnatal development, progressively displacing neuronal cell bodies from each other. At present, little is known about how cortical growth affects the development of neuronal circuits. Here, in acute and chronic experiments, we study the layout of ocular dominance (OD) columns in cat primary visual cortex during a period of substantial postnatal growth. We find that despite a considerable size increase of primary visual cortext, the spacing between columns is largely preserved. In contrast, their spatial arrangement changes systematically over this period. Whereas in young animals columns are more band-like, layouts become more isotropic in mature animals. We propose a novel mechanism of growth-induced reorganization that is based on the "zigzag instability," a dynamical instability observed in several inanimate pattern forming systems. We argue that this mechanism is inherent to a wide class of models for the activity-dependent formation of OD columns. Analyzing one representative of this class, the Elastic Network model, we show that this mechanism can account for the preservation of column spacing and the specific mode of reorganization of OD columns that we observe. We conclude that column width is preserved by systematic reorganization of neuronal selectivities during cortical expansion and that this reorganization is well described by the zigzag instability. Our work suggests that cortical circuits may remain plastic for an extended period in development to facilitate the modification of neuronal circuits to adjust for cortical growth.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0913020107</identifier><identifier>PMID: 20566883</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Algorithms ; Animals ; Biological Sciences ; Brain ; Cats ; Cells ; Critical periods ; Developmental biology ; Dominance, Ocular - physiology ; Hemispheres ; Modeling ; Models, Neurological ; Neurons ; Neurons - physiology ; Ocular dominance ; Ocular Physiological Phenomena ; Photic Stimulation ; Physical Sciences ; Stripes ; Visual cortex ; Visual Cortex - cytology ; Visual Cortex - growth &amp; development ; Visual Cortex - physiology ; Visual Pathways - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-07, Vol.107 (27), p.12293-12298</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 6, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-7882d55617ad09bc9396b98d8f10e14afee7e784833bb59823d85d1489906f683</citedby><cites>FETCH-LOGICAL-c457t-7882d55617ad09bc9396b98d8f10e14afee7e784833bb59823d85d1489906f683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/27.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20724243$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20724243$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20566883$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Keil, Wolfgang</creatorcontrib><creatorcontrib>Schmidt, Karl-Friedrich</creatorcontrib><creatorcontrib>Löwel, Siegrid</creatorcontrib><creatorcontrib>Kaschube, Matthias</creatorcontrib><creatorcontrib>Stevens, Charles F.</creatorcontrib><title>Reorganization of columnar architecture in the growing visual cortex</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Many cortical areas increase in size considerably during postnatal development, progressively displacing neuronal cell bodies from each other. At present, little is known about how cortical growth affects the development of neuronal circuits. Here, in acute and chronic experiments, we study the layout of ocular dominance (OD) columns in cat primary visual cortex during a period of substantial postnatal growth. We find that despite a considerable size increase of primary visual cortext, the spacing between columns is largely preserved. In contrast, their spatial arrangement changes systematically over this period. Whereas in young animals columns are more band-like, layouts become more isotropic in mature animals. We propose a novel mechanism of growth-induced reorganization that is based on the "zigzag instability," a dynamical instability observed in several inanimate pattern forming systems. We argue that this mechanism is inherent to a wide class of models for the activity-dependent formation of OD columns. Analyzing one representative of this class, the Elastic Network model, we show that this mechanism can account for the preservation of column spacing and the specific mode of reorganization of OD columns that we observe. We conclude that column width is preserved by systematic reorganization of neuronal selectivities during cortical expansion and that this reorganization is well described by the zigzag instability. Our work suggests that cortical circuits may remain plastic for an extended period in development to facilitate the modification of neuronal circuits to adjust for cortical growth.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Cats</subject><subject>Cells</subject><subject>Critical periods</subject><subject>Developmental biology</subject><subject>Dominance, Ocular - physiology</subject><subject>Hemispheres</subject><subject>Modeling</subject><subject>Models, Neurological</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Ocular dominance</subject><subject>Ocular Physiological Phenomena</subject><subject>Photic Stimulation</subject><subject>Physical Sciences</subject><subject>Stripes</subject><subject>Visual cortex</subject><subject>Visual Cortex - cytology</subject><subject>Visual Cortex - growth &amp; development</subject><subject>Visual Cortex - physiology</subject><subject>Visual Pathways - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkuLFDEURoMoTtu6dqUUblzVzM072QgyPmFAEF2HVFWqO0110iap8fHrTdHtzOjGVUhy7uHmfkHoKYZzDJJeHILN56AxBQL14B5a4bprBdNwH60AiGwVI-wMPcp5BwCaK3iIzghwIZSiK_Tms4tpY4P_ZYuPoYlj08dp3gebGpv6rS-uL3NyjQ9N2bpmk-J3HzbNtc-znSqbivvxGD0Y7ZTdk9O6Rl_fvf1y-aG9-vT-4-Xrq7ZnXJZWKkUGzgWWdgDd9Zpq0Wk1qBGDw8yOzkknFVOUdh3XitBB8QEzpTWIUSi6Rq-O3sPc7d3Qu1CSncwh-b1NP0203vx9E_zWbOK1IRqqRlbBy5MgxW-zy8Xsfe7dNNng4pyN5IxTBYL9n6RUcK7q5NfoxT_kLs4p1DkYAUIrAXTRXRyhPsWckxtvmsZgliTNkqS5TbJWPL_71hv-T3QVaE7AUnmrk4ZIgwnRC_LsiOxyiemOQpL6KSj9DU4urbY</recordid><startdate>20100706</startdate><enddate>20100706</enddate><creator>Keil, Wolfgang</creator><creator>Schmidt, Karl-Friedrich</creator><creator>Löwel, Siegrid</creator><creator>Kaschube, Matthias</creator><creator>Stevens, Charles F.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100706</creationdate><title>Reorganization of columnar architecture in the growing visual cortex</title><author>Keil, Wolfgang ; Schmidt, Karl-Friedrich ; Löwel, Siegrid ; Kaschube, Matthias ; Stevens, Charles F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-7882d55617ad09bc9396b98d8f10e14afee7e784833bb59823d85d1489906f683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Cats</topic><topic>Cells</topic><topic>Critical periods</topic><topic>Developmental biology</topic><topic>Dominance, Ocular - physiology</topic><topic>Hemispheres</topic><topic>Modeling</topic><topic>Models, Neurological</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Ocular dominance</topic><topic>Ocular Physiological Phenomena</topic><topic>Photic Stimulation</topic><topic>Physical Sciences</topic><topic>Stripes</topic><topic>Visual cortex</topic><topic>Visual Cortex - cytology</topic><topic>Visual Cortex - growth &amp; development</topic><topic>Visual Cortex - physiology</topic><topic>Visual Pathways - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keil, Wolfgang</creatorcontrib><creatorcontrib>Schmidt, Karl-Friedrich</creatorcontrib><creatorcontrib>Löwel, Siegrid</creatorcontrib><creatorcontrib>Kaschube, Matthias</creatorcontrib><creatorcontrib>Stevens, Charles F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keil, Wolfgang</au><au>Schmidt, Karl-Friedrich</au><au>Löwel, Siegrid</au><au>Kaschube, Matthias</au><au>Stevens, Charles F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reorganization of columnar architecture in the growing visual cortex</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-07-06</date><risdate>2010</risdate><volume>107</volume><issue>27</issue><spage>12293</spage><epage>12298</epage><pages>12293-12298</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Many cortical areas increase in size considerably during postnatal development, progressively displacing neuronal cell bodies from each other. At present, little is known about how cortical growth affects the development of neuronal circuits. Here, in acute and chronic experiments, we study the layout of ocular dominance (OD) columns in cat primary visual cortex during a period of substantial postnatal growth. We find that despite a considerable size increase of primary visual cortext, the spacing between columns is largely preserved. In contrast, their spatial arrangement changes systematically over this period. Whereas in young animals columns are more band-like, layouts become more isotropic in mature animals. We propose a novel mechanism of growth-induced reorganization that is based on the "zigzag instability," a dynamical instability observed in several inanimate pattern forming systems. We argue that this mechanism is inherent to a wide class of models for the activity-dependent formation of OD columns. Analyzing one representative of this class, the Elastic Network model, we show that this mechanism can account for the preservation of column spacing and the specific mode of reorganization of OD columns that we observe. We conclude that column width is preserved by systematic reorganization of neuronal selectivities during cortical expansion and that this reorganization is well described by the zigzag instability. Our work suggests that cortical circuits may remain plastic for an extended period in development to facilitate the modification of neuronal circuits to adjust for cortical growth.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20566883</pmid><doi>10.1073/pnas.0913020107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-07, Vol.107 (27), p.12293-12298
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_754538064
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algorithms
Animals
Biological Sciences
Brain
Cats
Cells
Critical periods
Developmental biology
Dominance, Ocular - physiology
Hemispheres
Modeling
Models, Neurological
Neurons
Neurons - physiology
Ocular dominance
Ocular Physiological Phenomena
Photic Stimulation
Physical Sciences
Stripes
Visual cortex
Visual Cortex - cytology
Visual Cortex - growth & development
Visual Cortex - physiology
Visual Pathways - physiology
title Reorganization of columnar architecture in the growing visual cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A29%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reorganization%20of%20columnar%20architecture%20in%20the%20growing%20visual%20cortex&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Keil,%20Wolfgang&rft.date=2010-07-06&rft.volume=107&rft.issue=27&rft.spage=12293&rft.epage=12298&rft.pages=12293-12298&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0913020107&rft_dat=%3Cjstor_proqu%3E20724243%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=606986034&rft_id=info:pmid/20566883&rft_jstor_id=20724243&rfr_iscdi=true