AFM and SEM characterization of iron oxide coated ceramic membranes

Alumina–zirconia–titania (AZT) ceramic membranes coated with iron oxide nanoparticles have been shown to improve water quality by significantly reducing the concentration of disinfection by-product precursors, and in the case of membrane filtration combined with ozonation, to reduce ozonation by-pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2006-10, Vol.41 (20), p.6861-6870
Hauptverfasser: KARNIK, B. S, BAUMANN, M. J, MASTEN, S. J, DAVIES, S. H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6870
container_issue 20
container_start_page 6861
container_title Journal of materials science
container_volume 41
creator KARNIK, B. S
BAUMANN, M. J
MASTEN, S. J
DAVIES, S. H
description Alumina–zirconia–titania (AZT) ceramic membranes coated with iron oxide nanoparticles have been shown to improve water quality by significantly reducing the concentration of disinfection by-product precursors, and in the case of membrane filtration combined with ozonation, to reduce ozonation by-products such as aldehydes, ketones and ketoacids. Commercially available ceramic membranes with a nominal molecular weight cut-off of 5 kilodaltons (kD) were coated 20, 30, 40 or 45 times with sol suspension processed Fe2O3 nanoparticles having an average diameter of 4–6 nm. These coated membranes were sintered in air at 900 °C for 30 min. The effects of sintering and coating layer thickness on the microstructure of the ceramic membranes were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). AFM images show a decreasing roughness after iron oxide coating with an average surface roughness of ∼161 nm for the uncoated and ∼130 nm for the coated membranes. SEM showed that as the coating thickness increased, the microstructure of the coating changed from a fine grained (average grain size of ∼27 nm) morphology at 20 coating layers to a coarse grained (average grain size of ∼66 nm) morphology at 40 coating layers with a corresponding increase in the average pore size from ∼57 nm to ∼120 nm. Optimum water quality was achieved at 40 layers, which corresponds to a surface coating morphology consisting of a uniform, coarse-grained structure with open, nano-sized interconnected pores.
doi_str_mv 10.1007/s10853-006-0943-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754529445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>754529445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-70cc53b1874ec64ac29e91342246244f8da124fa713645f811ec8423944c34d3</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMoWD9-gLeAqKfVTDLZZI-ltCq0eLD3kGazuGW3W5MtqL_eLC0IHsTTXJ55eWceQq6A3QNj6iEC01JkjOUZK1Bk8oiMQCqRoWbimIwY4zzjmMMpOYtxzRiTisOITMazBbWbkr5OF9S92WBd70P9Zfu629CuonUY5kddeuo62_uSOh9sWzva-nYV7MbHC3JS2Sb6y8M8J8vZdDl5yuYvj8-T8TxzKLDPFHNOihVohd7laB0vfAECearFEStdWuBYWQUiR1lpAO80clEgOoGlOCd3-9ht6N53PvamraPzTZM6dLtolETJEywTefsnyQvJmdDwD1AopbVO4PUvcN3twiZdaziXRV7kGlWiYE-50MUYfGW2oW5t-DTAzKDJ7DWZpMkMmszQ9eaQbKOzTZU-6ur4s6gF5AIK8Q1BsI6P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259696847</pqid></control><display><type>article</type><title>AFM and SEM characterization of iron oxide coated ceramic membranes</title><source>SpringerLink Journals - AutoHoldings</source><creator>KARNIK, B. S ; BAUMANN, M. J ; MASTEN, S. J ; DAVIES, S. H</creator><creatorcontrib>KARNIK, B. S ; BAUMANN, M. J ; MASTEN, S. J ; DAVIES, S. H</creatorcontrib><description>Alumina–zirconia–titania (AZT) ceramic membranes coated with iron oxide nanoparticles have been shown to improve water quality by significantly reducing the concentration of disinfection by-product precursors, and in the case of membrane filtration combined with ozonation, to reduce ozonation by-products such as aldehydes, ketones and ketoacids. Commercially available ceramic membranes with a nominal molecular weight cut-off of 5 kilodaltons (kD) were coated 20, 30, 40 or 45 times with sol suspension processed Fe2O3 nanoparticles having an average diameter of 4–6 nm. These coated membranes were sintered in air at 900 °C for 30 min. The effects of sintering and coating layer thickness on the microstructure of the ceramic membranes were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). AFM images show a decreasing roughness after iron oxide coating with an average surface roughness of ∼161 nm for the uncoated and ∼130 nm for the coated membranes. SEM showed that as the coating thickness increased, the microstructure of the coating changed from a fine grained (average grain size of ∼27 nm) morphology at 20 coating layers to a coarse grained (average grain size of ∼66 nm) morphology at 40 coating layers with a corresponding increase in the average pore size from ∼57 nm to ∼120 nm. Optimum water quality was achieved at 40 layers, which corresponds to a surface coating morphology consisting of a uniform, coarse-grained structure with open, nano-sized interconnected pores.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-006-0943-5</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Aldehydes ; Aluminum oxide ; Applied sciences ; Atomic force microscopy ; Building materials. Ceramics. Glasses ; Byproducts ; Ceramic coatings ; Ceramic industries ; Ceramics ; Chemical industry and chemicals ; Chemistry ; Coating ; Colloidal state and disperse state ; Energy dispersive X ray spectroscopy ; Exact sciences and technology ; General and physical chemistry ; Grain size ; Iron oxides ; Ketones ; Materials science ; Membranes ; Microscopes ; Microstructure ; Miscellaneous ; Morphology ; Nanoparticles ; Nanostructure ; Oxide coatings ; Pore size ; Porosity ; Scanning electron microscopy ; Sintering (powder metallurgy) ; Surface roughness ; Technical ceramics ; Thickness ; Water quality ; Zirconium dioxide</subject><ispartof>Journal of materials science, 2006-10, Vol.41 (20), p.6861-6870</ispartof><rights>2007 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2006). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-70cc53b1874ec64ac29e91342246244f8da124fa713645f811ec8423944c34d3</citedby><cites>FETCH-LOGICAL-c434t-70cc53b1874ec64ac29e91342246244f8da124fa713645f811ec8423944c34d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18316319$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KARNIK, B. S</creatorcontrib><creatorcontrib>BAUMANN, M. J</creatorcontrib><creatorcontrib>MASTEN, S. J</creatorcontrib><creatorcontrib>DAVIES, S. H</creatorcontrib><title>AFM and SEM characterization of iron oxide coated ceramic membranes</title><title>Journal of materials science</title><description>Alumina–zirconia–titania (AZT) ceramic membranes coated with iron oxide nanoparticles have been shown to improve water quality by significantly reducing the concentration of disinfection by-product precursors, and in the case of membrane filtration combined with ozonation, to reduce ozonation by-products such as aldehydes, ketones and ketoacids. Commercially available ceramic membranes with a nominal molecular weight cut-off of 5 kilodaltons (kD) were coated 20, 30, 40 or 45 times with sol suspension processed Fe2O3 nanoparticles having an average diameter of 4–6 nm. These coated membranes were sintered in air at 900 °C for 30 min. The effects of sintering and coating layer thickness on the microstructure of the ceramic membranes were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). AFM images show a decreasing roughness after iron oxide coating with an average surface roughness of ∼161 nm for the uncoated and ∼130 nm for the coated membranes. SEM showed that as the coating thickness increased, the microstructure of the coating changed from a fine grained (average grain size of ∼27 nm) morphology at 20 coating layers to a coarse grained (average grain size of ∼66 nm) morphology at 40 coating layers with a corresponding increase in the average pore size from ∼57 nm to ∼120 nm. Optimum water quality was achieved at 40 layers, which corresponds to a surface coating morphology consisting of a uniform, coarse-grained structure with open, nano-sized interconnected pores.</description><subject>Aldehydes</subject><subject>Aluminum oxide</subject><subject>Applied sciences</subject><subject>Atomic force microscopy</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Byproducts</subject><subject>Ceramic coatings</subject><subject>Ceramic industries</subject><subject>Ceramics</subject><subject>Chemical industry and chemicals</subject><subject>Chemistry</subject><subject>Coating</subject><subject>Colloidal state and disperse state</subject><subject>Energy dispersive X ray spectroscopy</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Grain size</subject><subject>Iron oxides</subject><subject>Ketones</subject><subject>Materials science</subject><subject>Membranes</subject><subject>Microscopes</subject><subject>Microstructure</subject><subject>Miscellaneous</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Oxide coatings</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Scanning electron microscopy</subject><subject>Sintering (powder metallurgy)</subject><subject>Surface roughness</subject><subject>Technical ceramics</subject><subject>Thickness</subject><subject>Water quality</subject><subject>Zirconium dioxide</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkU1LAzEQhoMoWD9-gLeAqKfVTDLZZI-ltCq0eLD3kGazuGW3W5MtqL_eLC0IHsTTXJ55eWceQq6A3QNj6iEC01JkjOUZK1Bk8oiMQCqRoWbimIwY4zzjmMMpOYtxzRiTisOITMazBbWbkr5OF9S92WBd70P9Zfu629CuonUY5kddeuo62_uSOh9sWzva-nYV7MbHC3JS2Sb6y8M8J8vZdDl5yuYvj8-T8TxzKLDPFHNOihVohd7laB0vfAECearFEStdWuBYWQUiR1lpAO80clEgOoGlOCd3-9ht6N53PvamraPzTZM6dLtolETJEywTefsnyQvJmdDwD1AopbVO4PUvcN3twiZdaziXRV7kGlWiYE-50MUYfGW2oW5t-DTAzKDJ7DWZpMkMmszQ9eaQbKOzTZU-6ur4s6gF5AIK8Q1BsI6P</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>KARNIK, B. S</creator><creator>BAUMANN, M. J</creator><creator>MASTEN, S. J</creator><creator>DAVIES, S. H</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7QF</scope><scope>7QQ</scope></search><sort><creationdate>20061001</creationdate><title>AFM and SEM characterization of iron oxide coated ceramic membranes</title><author>KARNIK, B. S ; BAUMANN, M. J ; MASTEN, S. J ; DAVIES, S. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-70cc53b1874ec64ac29e91342246244f8da124fa713645f811ec8423944c34d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Aldehydes</topic><topic>Aluminum oxide</topic><topic>Applied sciences</topic><topic>Atomic force microscopy</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Byproducts</topic><topic>Ceramic coatings</topic><topic>Ceramic industries</topic><topic>Ceramics</topic><topic>Chemical industry and chemicals</topic><topic>Chemistry</topic><topic>Coating</topic><topic>Colloidal state and disperse state</topic><topic>Energy dispersive X ray spectroscopy</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Grain size</topic><topic>Iron oxides</topic><topic>Ketones</topic><topic>Materials science</topic><topic>Membranes</topic><topic>Microscopes</topic><topic>Microstructure</topic><topic>Miscellaneous</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Oxide coatings</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Scanning electron microscopy</topic><topic>Sintering (powder metallurgy)</topic><topic>Surface roughness</topic><topic>Technical ceramics</topic><topic>Thickness</topic><topic>Water quality</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KARNIK, B. S</creatorcontrib><creatorcontrib>BAUMANN, M. J</creatorcontrib><creatorcontrib>MASTEN, S. J</creatorcontrib><creatorcontrib>DAVIES, S. H</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KARNIK, B. S</au><au>BAUMANN, M. J</au><au>MASTEN, S. J</au><au>DAVIES, S. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AFM and SEM characterization of iron oxide coated ceramic membranes</atitle><jtitle>Journal of materials science</jtitle><date>2006-10-01</date><risdate>2006</risdate><volume>41</volume><issue>20</issue><spage>6861</spage><epage>6870</epage><pages>6861-6870</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>Alumina–zirconia–titania (AZT) ceramic membranes coated with iron oxide nanoparticles have been shown to improve water quality by significantly reducing the concentration of disinfection by-product precursors, and in the case of membrane filtration combined with ozonation, to reduce ozonation by-products such as aldehydes, ketones and ketoacids. Commercially available ceramic membranes with a nominal molecular weight cut-off of 5 kilodaltons (kD) were coated 20, 30, 40 or 45 times with sol suspension processed Fe2O3 nanoparticles having an average diameter of 4–6 nm. These coated membranes were sintered in air at 900 °C for 30 min. The effects of sintering and coating layer thickness on the microstructure of the ceramic membranes were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). AFM images show a decreasing roughness after iron oxide coating with an average surface roughness of ∼161 nm for the uncoated and ∼130 nm for the coated membranes. SEM showed that as the coating thickness increased, the microstructure of the coating changed from a fine grained (average grain size of ∼27 nm) morphology at 20 coating layers to a coarse grained (average grain size of ∼66 nm) morphology at 40 coating layers with a corresponding increase in the average pore size from ∼57 nm to ∼120 nm. Optimum water quality was achieved at 40 layers, which corresponds to a surface coating morphology consisting of a uniform, coarse-grained structure with open, nano-sized interconnected pores.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10853-006-0943-5</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2006-10, Vol.41 (20), p.6861-6870
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_754529445
source SpringerLink Journals - AutoHoldings
subjects Aldehydes
Aluminum oxide
Applied sciences
Atomic force microscopy
Building materials. Ceramics. Glasses
Byproducts
Ceramic coatings
Ceramic industries
Ceramics
Chemical industry and chemicals
Chemistry
Coating
Colloidal state and disperse state
Energy dispersive X ray spectroscopy
Exact sciences and technology
General and physical chemistry
Grain size
Iron oxides
Ketones
Materials science
Membranes
Microscopes
Microstructure
Miscellaneous
Morphology
Nanoparticles
Nanostructure
Oxide coatings
Pore size
Porosity
Scanning electron microscopy
Sintering (powder metallurgy)
Surface roughness
Technical ceramics
Thickness
Water quality
Zirconium dioxide
title AFM and SEM characterization of iron oxide coated ceramic membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AFM%20and%20SEM%20characterization%20of%20iron%20oxide%20coated%20ceramic%20membranes&rft.jtitle=Journal%20of%20materials%20science&rft.au=KARNIK,%20B.%20S&rft.date=2006-10-01&rft.volume=41&rft.issue=20&rft.spage=6861&rft.epage=6870&rft.pages=6861-6870&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1007/s10853-006-0943-5&rft_dat=%3Cproquest_cross%3E754529445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259696847&rft_id=info:pmid/&rfr_iscdi=true