AFM and SEM characterization of iron oxide coated ceramic membranes
Alumina–zirconia–titania (AZT) ceramic membranes coated with iron oxide nanoparticles have been shown to improve water quality by significantly reducing the concentration of disinfection by-product precursors, and in the case of membrane filtration combined with ozonation, to reduce ozonation by-pro...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2006-10, Vol.41 (20), p.6861-6870 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6870 |
---|---|
container_issue | 20 |
container_start_page | 6861 |
container_title | Journal of materials science |
container_volume | 41 |
creator | KARNIK, B. S BAUMANN, M. J MASTEN, S. J DAVIES, S. H |
description | Alumina–zirconia–titania (AZT) ceramic membranes coated with iron oxide nanoparticles have been shown to improve water quality by significantly reducing the concentration of disinfection by-product precursors, and in the case of membrane filtration combined with ozonation, to reduce ozonation by-products such as aldehydes, ketones and ketoacids. Commercially available ceramic membranes with a nominal molecular weight cut-off of 5 kilodaltons (kD) were coated 20, 30, 40 or 45 times with sol suspension processed Fe2O3 nanoparticles having an average diameter of 4–6 nm. These coated membranes were sintered in air at 900 °C for 30 min. The effects of sintering and coating layer thickness on the microstructure of the ceramic membranes were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). AFM images show a decreasing roughness after iron oxide coating with an average surface roughness of ∼161 nm for the uncoated and ∼130 nm for the coated membranes. SEM showed that as the coating thickness increased, the microstructure of the coating changed from a fine grained (average grain size of ∼27 nm) morphology at 20 coating layers to a coarse grained (average grain size of ∼66 nm) morphology at 40 coating layers with a corresponding increase in the average pore size from ∼57 nm to ∼120 nm. Optimum water quality was achieved at 40 layers, which corresponds to a surface coating morphology consisting of a uniform, coarse-grained structure with open, nano-sized interconnected pores. |
doi_str_mv | 10.1007/s10853-006-0943-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754529445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>754529445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-70cc53b1874ec64ac29e91342246244f8da124fa713645f811ec8423944c34d3</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMoWD9-gLeAqKfVTDLZZI-ltCq0eLD3kGazuGW3W5MtqL_eLC0IHsTTXJ55eWceQq6A3QNj6iEC01JkjOUZK1Bk8oiMQCqRoWbimIwY4zzjmMMpOYtxzRiTisOITMazBbWbkr5OF9S92WBd70P9Zfu629CuonUY5kddeuo62_uSOh9sWzva-nYV7MbHC3JS2Sb6y8M8J8vZdDl5yuYvj8-T8TxzKLDPFHNOihVohd7laB0vfAECearFEStdWuBYWQUiR1lpAO80clEgOoGlOCd3-9ht6N53PvamraPzTZM6dLtolETJEywTefsnyQvJmdDwD1AopbVO4PUvcN3twiZdaziXRV7kGlWiYE-50MUYfGW2oW5t-DTAzKDJ7DWZpMkMmszQ9eaQbKOzTZU-6ur4s6gF5AIK8Q1BsI6P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259696847</pqid></control><display><type>article</type><title>AFM and SEM characterization of iron oxide coated ceramic membranes</title><source>SpringerLink Journals - AutoHoldings</source><creator>KARNIK, B. S ; BAUMANN, M. J ; MASTEN, S. J ; DAVIES, S. H</creator><creatorcontrib>KARNIK, B. S ; BAUMANN, M. J ; MASTEN, S. J ; DAVIES, S. H</creatorcontrib><description>Alumina–zirconia–titania (AZT) ceramic membranes coated with iron oxide nanoparticles have been shown to improve water quality by significantly reducing the concentration of disinfection by-product precursors, and in the case of membrane filtration combined with ozonation, to reduce ozonation by-products such as aldehydes, ketones and ketoacids. Commercially available ceramic membranes with a nominal molecular weight cut-off of 5 kilodaltons (kD) were coated 20, 30, 40 or 45 times with sol suspension processed Fe2O3 nanoparticles having an average diameter of 4–6 nm. These coated membranes were sintered in air at 900 °C for 30 min. The effects of sintering and coating layer thickness on the microstructure of the ceramic membranes were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). AFM images show a decreasing roughness after iron oxide coating with an average surface roughness of ∼161 nm for the uncoated and ∼130 nm for the coated membranes. SEM showed that as the coating thickness increased, the microstructure of the coating changed from a fine grained (average grain size of ∼27 nm) morphology at 20 coating layers to a coarse grained (average grain size of ∼66 nm) morphology at 40 coating layers with a corresponding increase in the average pore size from ∼57 nm to ∼120 nm. Optimum water quality was achieved at 40 layers, which corresponds to a surface coating morphology consisting of a uniform, coarse-grained structure with open, nano-sized interconnected pores.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-006-0943-5</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Aldehydes ; Aluminum oxide ; Applied sciences ; Atomic force microscopy ; Building materials. Ceramics. Glasses ; Byproducts ; Ceramic coatings ; Ceramic industries ; Ceramics ; Chemical industry and chemicals ; Chemistry ; Coating ; Colloidal state and disperse state ; Energy dispersive X ray spectroscopy ; Exact sciences and technology ; General and physical chemistry ; Grain size ; Iron oxides ; Ketones ; Materials science ; Membranes ; Microscopes ; Microstructure ; Miscellaneous ; Morphology ; Nanoparticles ; Nanostructure ; Oxide coatings ; Pore size ; Porosity ; Scanning electron microscopy ; Sintering (powder metallurgy) ; Surface roughness ; Technical ceramics ; Thickness ; Water quality ; Zirconium dioxide</subject><ispartof>Journal of materials science, 2006-10, Vol.41 (20), p.6861-6870</ispartof><rights>2007 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2006). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-70cc53b1874ec64ac29e91342246244f8da124fa713645f811ec8423944c34d3</citedby><cites>FETCH-LOGICAL-c434t-70cc53b1874ec64ac29e91342246244f8da124fa713645f811ec8423944c34d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18316319$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KARNIK, B. S</creatorcontrib><creatorcontrib>BAUMANN, M. J</creatorcontrib><creatorcontrib>MASTEN, S. J</creatorcontrib><creatorcontrib>DAVIES, S. H</creatorcontrib><title>AFM and SEM characterization of iron oxide coated ceramic membranes</title><title>Journal of materials science</title><description>Alumina–zirconia–titania (AZT) ceramic membranes coated with iron oxide nanoparticles have been shown to improve water quality by significantly reducing the concentration of disinfection by-product precursors, and in the case of membrane filtration combined with ozonation, to reduce ozonation by-products such as aldehydes, ketones and ketoacids. Commercially available ceramic membranes with a nominal molecular weight cut-off of 5 kilodaltons (kD) were coated 20, 30, 40 or 45 times with sol suspension processed Fe2O3 nanoparticles having an average diameter of 4–6 nm. These coated membranes were sintered in air at 900 °C for 30 min. The effects of sintering and coating layer thickness on the microstructure of the ceramic membranes were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). AFM images show a decreasing roughness after iron oxide coating with an average surface roughness of ∼161 nm for the uncoated and ∼130 nm for the coated membranes. SEM showed that as the coating thickness increased, the microstructure of the coating changed from a fine grained (average grain size of ∼27 nm) morphology at 20 coating layers to a coarse grained (average grain size of ∼66 nm) morphology at 40 coating layers with a corresponding increase in the average pore size from ∼57 nm to ∼120 nm. Optimum water quality was achieved at 40 layers, which corresponds to a surface coating morphology consisting of a uniform, coarse-grained structure with open, nano-sized interconnected pores.</description><subject>Aldehydes</subject><subject>Aluminum oxide</subject><subject>Applied sciences</subject><subject>Atomic force microscopy</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Byproducts</subject><subject>Ceramic coatings</subject><subject>Ceramic industries</subject><subject>Ceramics</subject><subject>Chemical industry and chemicals</subject><subject>Chemistry</subject><subject>Coating</subject><subject>Colloidal state and disperse state</subject><subject>Energy dispersive X ray spectroscopy</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Grain size</subject><subject>Iron oxides</subject><subject>Ketones</subject><subject>Materials science</subject><subject>Membranes</subject><subject>Microscopes</subject><subject>Microstructure</subject><subject>Miscellaneous</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Oxide coatings</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Scanning electron microscopy</subject><subject>Sintering (powder metallurgy)</subject><subject>Surface roughness</subject><subject>Technical ceramics</subject><subject>Thickness</subject><subject>Water quality</subject><subject>Zirconium dioxide</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkU1LAzEQhoMoWD9-gLeAqKfVTDLZZI-ltCq0eLD3kGazuGW3W5MtqL_eLC0IHsTTXJ55eWceQq6A3QNj6iEC01JkjOUZK1Bk8oiMQCqRoWbimIwY4zzjmMMpOYtxzRiTisOITMazBbWbkr5OF9S92WBd70P9Zfu629CuonUY5kddeuo62_uSOh9sWzva-nYV7MbHC3JS2Sb6y8M8J8vZdDl5yuYvj8-T8TxzKLDPFHNOihVohd7laB0vfAECearFEStdWuBYWQUiR1lpAO80clEgOoGlOCd3-9ht6N53PvamraPzTZM6dLtolETJEywTefsnyQvJmdDwD1AopbVO4PUvcN3twiZdaziXRV7kGlWiYE-50MUYfGW2oW5t-DTAzKDJ7DWZpMkMmszQ9eaQbKOzTZU-6ur4s6gF5AIK8Q1BsI6P</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>KARNIK, B. S</creator><creator>BAUMANN, M. J</creator><creator>MASTEN, S. J</creator><creator>DAVIES, S. H</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7QF</scope><scope>7QQ</scope></search><sort><creationdate>20061001</creationdate><title>AFM and SEM characterization of iron oxide coated ceramic membranes</title><author>KARNIK, B. S ; BAUMANN, M. J ; MASTEN, S. J ; DAVIES, S. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-70cc53b1874ec64ac29e91342246244f8da124fa713645f811ec8423944c34d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Aldehydes</topic><topic>Aluminum oxide</topic><topic>Applied sciences</topic><topic>Atomic force microscopy</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Byproducts</topic><topic>Ceramic coatings</topic><topic>Ceramic industries</topic><topic>Ceramics</topic><topic>Chemical industry and chemicals</topic><topic>Chemistry</topic><topic>Coating</topic><topic>Colloidal state and disperse state</topic><topic>Energy dispersive X ray spectroscopy</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Grain size</topic><topic>Iron oxides</topic><topic>Ketones</topic><topic>Materials science</topic><topic>Membranes</topic><topic>Microscopes</topic><topic>Microstructure</topic><topic>Miscellaneous</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Oxide coatings</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Scanning electron microscopy</topic><topic>Sintering (powder metallurgy)</topic><topic>Surface roughness</topic><topic>Technical ceramics</topic><topic>Thickness</topic><topic>Water quality</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KARNIK, B. S</creatorcontrib><creatorcontrib>BAUMANN, M. J</creatorcontrib><creatorcontrib>MASTEN, S. J</creatorcontrib><creatorcontrib>DAVIES, S. H</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KARNIK, B. S</au><au>BAUMANN, M. J</au><au>MASTEN, S. J</au><au>DAVIES, S. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AFM and SEM characterization of iron oxide coated ceramic membranes</atitle><jtitle>Journal of materials science</jtitle><date>2006-10-01</date><risdate>2006</risdate><volume>41</volume><issue>20</issue><spage>6861</spage><epage>6870</epage><pages>6861-6870</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>Alumina–zirconia–titania (AZT) ceramic membranes coated with iron oxide nanoparticles have been shown to improve water quality by significantly reducing the concentration of disinfection by-product precursors, and in the case of membrane filtration combined with ozonation, to reduce ozonation by-products such as aldehydes, ketones and ketoacids. Commercially available ceramic membranes with a nominal molecular weight cut-off of 5 kilodaltons (kD) were coated 20, 30, 40 or 45 times with sol suspension processed Fe2O3 nanoparticles having an average diameter of 4–6 nm. These coated membranes were sintered in air at 900 °C for 30 min. The effects of sintering and coating layer thickness on the microstructure of the ceramic membranes were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). AFM images show a decreasing roughness after iron oxide coating with an average surface roughness of ∼161 nm for the uncoated and ∼130 nm for the coated membranes. SEM showed that as the coating thickness increased, the microstructure of the coating changed from a fine grained (average grain size of ∼27 nm) morphology at 20 coating layers to a coarse grained (average grain size of ∼66 nm) morphology at 40 coating layers with a corresponding increase in the average pore size from ∼57 nm to ∼120 nm. Optimum water quality was achieved at 40 layers, which corresponds to a surface coating morphology consisting of a uniform, coarse-grained structure with open, nano-sized interconnected pores.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10853-006-0943-5</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2006-10, Vol.41 (20), p.6861-6870 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_754529445 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aldehydes Aluminum oxide Applied sciences Atomic force microscopy Building materials. Ceramics. Glasses Byproducts Ceramic coatings Ceramic industries Ceramics Chemical industry and chemicals Chemistry Coating Colloidal state and disperse state Energy dispersive X ray spectroscopy Exact sciences and technology General and physical chemistry Grain size Iron oxides Ketones Materials science Membranes Microscopes Microstructure Miscellaneous Morphology Nanoparticles Nanostructure Oxide coatings Pore size Porosity Scanning electron microscopy Sintering (powder metallurgy) Surface roughness Technical ceramics Thickness Water quality Zirconium dioxide |
title | AFM and SEM characterization of iron oxide coated ceramic membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AFM%20and%20SEM%20characterization%20of%20iron%20oxide%20coated%20ceramic%20membranes&rft.jtitle=Journal%20of%20materials%20science&rft.au=KARNIK,%20B.%20S&rft.date=2006-10-01&rft.volume=41&rft.issue=20&rft.spage=6861&rft.epage=6870&rft.pages=6861-6870&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1007/s10853-006-0943-5&rft_dat=%3Cproquest_cross%3E754529445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259696847&rft_id=info:pmid/&rfr_iscdi=true |