Some mathematical results concerning hessians of binding polynomials and co-operativity coefficients

A number of miscellaneous results concerning binding polynomials, saturation functions, Hill plot slopes, co-operativity coefficients and steady-state rate equations are presented. A theorem of Newton and Sylvester is of value in understanding the dependence of the nature of the zeros of binding pol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 1980-01, Vol.85 (1), p.45-51
Hauptverfasser: Bardsley, William G., Woolfson, Richard, Wood, Reg M.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue 1
container_start_page 45
container_title Journal of theoretical biology
container_volume 85
creator Bardsley, William G.
Woolfson, Richard
Wood, Reg M.W.
description A number of miscellaneous results concerning binding polynomials, saturation functions, Hill plot slopes, co-operativity coefficients and steady-state rate equations are presented. A theorem of Newton and Sylvester is of value in understanding the dependence of the nature of the zeros of binding polynomials on the signs of successive co-operativity coefficients. Real rational functions of degree n : n + r with positive coefficients can have at most n turning points for r > 0 or n − 1 for r = 0. For n binding sites the Hill plot can have at most n − 2 changes in sign of homotropic co-operativity and for this it is necessary but not sufficient for co-operativity coefficients to alternate in sign. The geometric significance of zeros of Hessians is given. When Hill plots have inflexions of slope unity, then the Adair constants satisfy an algebraic equation of order 6( n−3).
doi_str_mv 10.1016/0022-5193(80)90279-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75437582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0022519380902799</els_id><sourcerecordid>75437582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-30fc2fe37eb220471091fe14417e588e939e29f9340ac784f67bda630a0930d73</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoun78A4WeRA_VSZM2zUUQ8QsED-o5ZNOJRtpkTbrC_ntTd_HoJSGZZ95hHkKOKVxQoM0lQFWVNZXsrIVzCZWQpdwiMwqyLtua020y-0P2yH5KnwAgOWt2ya7gDacNnZHuJQxYDHr8wHw4o_siYlr2YypM8Aajd_69-MCUnPapCLaYO99Nf4vQr3wYnO5ToX2X8TIsMOaQbzeu8hOtdcahH9Mh2bEZw6PNfUDe7m5fbx7Kp-f7x5vrp9KwWowlA2sqi0zgvKqAi7wJtUg5pwLrtkXJJFbSSsZBG9Fy24h5pxsGGiSDTrADcrrOXcTwtcQ0qsElg32vPYZlUqLmTNRtlUG-Bk0MKUW0ahHdoONKUVCTXDWZU5M51YL6latkbjvZ5C_nA3Z_TRubuX61rmNe8tthVGkSYLBzEc2ouuD-H_ADk3mKFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>75437582</pqid></control><display><type>article</type><title>Some mathematical results concerning hessians of binding polynomials and co-operativity coefficients</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Bardsley, William G. ; Woolfson, Richard ; Wood, Reg M.W.</creator><creatorcontrib>Bardsley, William G. ; Woolfson, Richard ; Wood, Reg M.W.</creatorcontrib><description>A number of miscellaneous results concerning binding polynomials, saturation functions, Hill plot slopes, co-operativity coefficients and steady-state rate equations are presented. A theorem of Newton and Sylvester is of value in understanding the dependence of the nature of the zeros of binding polynomials on the signs of successive co-operativity coefficients. Real rational functions of degree n : n + r with positive coefficients can have at most n turning points for r &gt; 0 or n − 1 for r = 0. For n binding sites the Hill plot can have at most n − 2 changes in sign of homotropic co-operativity and for this it is necessary but not sufficient for co-operativity coefficients to alternate in sign. The geometric significance of zeros of Hessians is given. When Hill plots have inflexions of slope unity, then the Adair constants satisfy an algebraic equation of order 6( n−3).</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/0022-5193(80)90279-9</identifier><identifier>PMID: 7464161</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Binding Sites ; Ligands ; Macromolecular Substances ; Models, Chemical</subject><ispartof>Journal of theoretical biology, 1980-01, Vol.85 (1), p.45-51</ispartof><rights>1980</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-30fc2fe37eb220471091fe14417e588e939e29f9340ac784f67bda630a0930d73</citedby><cites>FETCH-LOGICAL-c357t-30fc2fe37eb220471091fe14417e588e939e29f9340ac784f67bda630a0930d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0022519380902799$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7464161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bardsley, William G.</creatorcontrib><creatorcontrib>Woolfson, Richard</creatorcontrib><creatorcontrib>Wood, Reg M.W.</creatorcontrib><title>Some mathematical results concerning hessians of binding polynomials and co-operativity coefficients</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>A number of miscellaneous results concerning binding polynomials, saturation functions, Hill plot slopes, co-operativity coefficients and steady-state rate equations are presented. A theorem of Newton and Sylvester is of value in understanding the dependence of the nature of the zeros of binding polynomials on the signs of successive co-operativity coefficients. Real rational functions of degree n : n + r with positive coefficients can have at most n turning points for r &gt; 0 or n − 1 for r = 0. For n binding sites the Hill plot can have at most n − 2 changes in sign of homotropic co-operativity and for this it is necessary but not sufficient for co-operativity coefficients to alternate in sign. The geometric significance of zeros of Hessians is given. When Hill plots have inflexions of slope unity, then the Adair constants satisfy an algebraic equation of order 6( n−3).</description><subject>Binding Sites</subject><subject>Ligands</subject><subject>Macromolecular Substances</subject><subject>Models, Chemical</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMoun78A4WeRA_VSZM2zUUQ8QsED-o5ZNOJRtpkTbrC_ntTd_HoJSGZZ95hHkKOKVxQoM0lQFWVNZXsrIVzCZWQpdwiMwqyLtua020y-0P2yH5KnwAgOWt2ya7gDacNnZHuJQxYDHr8wHw4o_siYlr2YypM8Aajd_69-MCUnPapCLaYO99Nf4vQr3wYnO5ToX2X8TIsMOaQbzeu8hOtdcahH9Mh2bEZw6PNfUDe7m5fbx7Kp-f7x5vrp9KwWowlA2sqi0zgvKqAi7wJtUg5pwLrtkXJJFbSSsZBG9Fy24h5pxsGGiSDTrADcrrOXcTwtcQ0qsElg32vPYZlUqLmTNRtlUG-Bk0MKUW0ahHdoONKUVCTXDWZU5M51YL6latkbjvZ5C_nA3Z_TRubuX61rmNe8tthVGkSYLBzEc2ouuD-H_ADk3mKFQ</recordid><startdate>19800101</startdate><enddate>19800101</enddate><creator>Bardsley, William G.</creator><creator>Woolfson, Richard</creator><creator>Wood, Reg M.W.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19800101</creationdate><title>Some mathematical results concerning hessians of binding polynomials and co-operativity coefficients</title><author>Bardsley, William G. ; Woolfson, Richard ; Wood, Reg M.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-30fc2fe37eb220471091fe14417e588e939e29f9340ac784f67bda630a0930d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>Binding Sites</topic><topic>Ligands</topic><topic>Macromolecular Substances</topic><topic>Models, Chemical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bardsley, William G.</creatorcontrib><creatorcontrib>Woolfson, Richard</creatorcontrib><creatorcontrib>Wood, Reg M.W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bardsley, William G.</au><au>Woolfson, Richard</au><au>Wood, Reg M.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some mathematical results concerning hessians of binding polynomials and co-operativity coefficients</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>1980-01-01</date><risdate>1980</risdate><volume>85</volume><issue>1</issue><spage>45</spage><epage>51</epage><pages>45-51</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>A number of miscellaneous results concerning binding polynomials, saturation functions, Hill plot slopes, co-operativity coefficients and steady-state rate equations are presented. A theorem of Newton and Sylvester is of value in understanding the dependence of the nature of the zeros of binding polynomials on the signs of successive co-operativity coefficients. Real rational functions of degree n : n + r with positive coefficients can have at most n turning points for r &gt; 0 or n − 1 for r = 0. For n binding sites the Hill plot can have at most n − 2 changes in sign of homotropic co-operativity and for this it is necessary but not sufficient for co-operativity coefficients to alternate in sign. The geometric significance of zeros of Hessians is given. When Hill plots have inflexions of slope unity, then the Adair constants satisfy an algebraic equation of order 6( n−3).</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>7464161</pmid><doi>10.1016/0022-5193(80)90279-9</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 1980-01, Vol.85 (1), p.45-51
issn 0022-5193
1095-8541
language eng
recordid cdi_proquest_miscellaneous_75437582
source MEDLINE; Elsevier ScienceDirect Journals
subjects Binding Sites
Ligands
Macromolecular Substances
Models, Chemical
title Some mathematical results concerning hessians of binding polynomials and co-operativity coefficients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20mathematical%20results%20concerning%20hessians%20of%20binding%20polynomials%20and%20co-operativity%20coefficients&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Bardsley,%20William%20G.&rft.date=1980-01-01&rft.volume=85&rft.issue=1&rft.spage=45&rft.epage=51&rft.pages=45-51&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/0022-5193(80)90279-9&rft_dat=%3Cproquest_cross%3E75437582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=75437582&rft_id=info:pmid/7464161&rft_els_id=0022519380902799&rfr_iscdi=true