Some mathematical results concerning hessians of binding polynomials and co-operativity coefficients
A number of miscellaneous results concerning binding polynomials, saturation functions, Hill plot slopes, co-operativity coefficients and steady-state rate equations are presented. A theorem of Newton and Sylvester is of value in understanding the dependence of the nature of the zeros of binding pol...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical biology 1980-01, Vol.85 (1), p.45-51 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 51 |
---|---|
container_issue | 1 |
container_start_page | 45 |
container_title | Journal of theoretical biology |
container_volume | 85 |
creator | Bardsley, William G. Woolfson, Richard Wood, Reg M.W. |
description | A number of miscellaneous results concerning binding polynomials, saturation functions, Hill plot slopes, co-operativity coefficients and steady-state rate equations are presented. A theorem of Newton and Sylvester is of value in understanding the dependence of the nature of the zeros of binding polynomials on the signs of successive co-operativity coefficients. Real rational functions of degree
n :
n +
r with positive coefficients can have at most n turning points for
r > 0 or
n − 1 for
r = 0. For
n binding sites the Hill plot can have at most
n − 2 changes in sign of homotropic co-operativity and for this it is necessary but not sufficient for co-operativity coefficients to alternate in sign. The geometric significance of zeros of Hessians is given. When Hill plots have inflexions of slope unity, then the Adair constants satisfy an algebraic equation of order 6(
n−3). |
doi_str_mv | 10.1016/0022-5193(80)90279-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75437582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0022519380902799</els_id><sourcerecordid>75437582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-30fc2fe37eb220471091fe14417e588e939e29f9340ac784f67bda630a0930d73</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoun78A4WeRA_VSZM2zUUQ8QsED-o5ZNOJRtpkTbrC_ntTd_HoJSGZZ95hHkKOKVxQoM0lQFWVNZXsrIVzCZWQpdwiMwqyLtua020y-0P2yH5KnwAgOWt2ya7gDacNnZHuJQxYDHr8wHw4o_siYlr2YypM8Aajd_69-MCUnPapCLaYO99Nf4vQr3wYnO5ToX2X8TIsMOaQbzeu8hOtdcahH9Mh2bEZw6PNfUDe7m5fbx7Kp-f7x5vrp9KwWowlA2sqi0zgvKqAi7wJtUg5pwLrtkXJJFbSSsZBG9Fy24h5pxsGGiSDTrADcrrOXcTwtcQ0qsElg32vPYZlUqLmTNRtlUG-Bk0MKUW0ahHdoONKUVCTXDWZU5M51YL6latkbjvZ5C_nA3Z_TRubuX61rmNe8tthVGkSYLBzEc2ouuD-H_ADk3mKFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>75437582</pqid></control><display><type>article</type><title>Some mathematical results concerning hessians of binding polynomials and co-operativity coefficients</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Bardsley, William G. ; Woolfson, Richard ; Wood, Reg M.W.</creator><creatorcontrib>Bardsley, William G. ; Woolfson, Richard ; Wood, Reg M.W.</creatorcontrib><description>A number of miscellaneous results concerning binding polynomials, saturation functions, Hill plot slopes, co-operativity coefficients and steady-state rate equations are presented. A theorem of Newton and Sylvester is of value in understanding the dependence of the nature of the zeros of binding polynomials on the signs of successive co-operativity coefficients. Real rational functions of degree
n :
n +
r with positive coefficients can have at most n turning points for
r > 0 or
n − 1 for
r = 0. For
n binding sites the Hill plot can have at most
n − 2 changes in sign of homotropic co-operativity and for this it is necessary but not sufficient for co-operativity coefficients to alternate in sign. The geometric significance of zeros of Hessians is given. When Hill plots have inflexions of slope unity, then the Adair constants satisfy an algebraic equation of order 6(
n−3).</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/0022-5193(80)90279-9</identifier><identifier>PMID: 7464161</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Binding Sites ; Ligands ; Macromolecular Substances ; Models, Chemical</subject><ispartof>Journal of theoretical biology, 1980-01, Vol.85 (1), p.45-51</ispartof><rights>1980</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-30fc2fe37eb220471091fe14417e588e939e29f9340ac784f67bda630a0930d73</citedby><cites>FETCH-LOGICAL-c357t-30fc2fe37eb220471091fe14417e588e939e29f9340ac784f67bda630a0930d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0022519380902799$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7464161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bardsley, William G.</creatorcontrib><creatorcontrib>Woolfson, Richard</creatorcontrib><creatorcontrib>Wood, Reg M.W.</creatorcontrib><title>Some mathematical results concerning hessians of binding polynomials and co-operativity coefficients</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>A number of miscellaneous results concerning binding polynomials, saturation functions, Hill plot slopes, co-operativity coefficients and steady-state rate equations are presented. A theorem of Newton and Sylvester is of value in understanding the dependence of the nature of the zeros of binding polynomials on the signs of successive co-operativity coefficients. Real rational functions of degree
n :
n +
r with positive coefficients can have at most n turning points for
r > 0 or
n − 1 for
r = 0. For
n binding sites the Hill plot can have at most
n − 2 changes in sign of homotropic co-operativity and for this it is necessary but not sufficient for co-operativity coefficients to alternate in sign. The geometric significance of zeros of Hessians is given. When Hill plots have inflexions of slope unity, then the Adair constants satisfy an algebraic equation of order 6(
n−3).</description><subject>Binding Sites</subject><subject>Ligands</subject><subject>Macromolecular Substances</subject><subject>Models, Chemical</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMoun78A4WeRA_VSZM2zUUQ8QsED-o5ZNOJRtpkTbrC_ntTd_HoJSGZZ95hHkKOKVxQoM0lQFWVNZXsrIVzCZWQpdwiMwqyLtua020y-0P2yH5KnwAgOWt2ya7gDacNnZHuJQxYDHr8wHw4o_siYlr2YypM8Aajd_69-MCUnPapCLaYO99Nf4vQr3wYnO5ToX2X8TIsMOaQbzeu8hOtdcahH9Mh2bEZw6PNfUDe7m5fbx7Kp-f7x5vrp9KwWowlA2sqi0zgvKqAi7wJtUg5pwLrtkXJJFbSSsZBG9Fy24h5pxsGGiSDTrADcrrOXcTwtcQ0qsElg32vPYZlUqLmTNRtlUG-Bk0MKUW0ahHdoONKUVCTXDWZU5M51YL6latkbjvZ5C_nA3Z_TRubuX61rmNe8tthVGkSYLBzEc2ouuD-H_ADk3mKFQ</recordid><startdate>19800101</startdate><enddate>19800101</enddate><creator>Bardsley, William G.</creator><creator>Woolfson, Richard</creator><creator>Wood, Reg M.W.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19800101</creationdate><title>Some mathematical results concerning hessians of binding polynomials and co-operativity coefficients</title><author>Bardsley, William G. ; Woolfson, Richard ; Wood, Reg M.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-30fc2fe37eb220471091fe14417e588e939e29f9340ac784f67bda630a0930d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>Binding Sites</topic><topic>Ligands</topic><topic>Macromolecular Substances</topic><topic>Models, Chemical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bardsley, William G.</creatorcontrib><creatorcontrib>Woolfson, Richard</creatorcontrib><creatorcontrib>Wood, Reg M.W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bardsley, William G.</au><au>Woolfson, Richard</au><au>Wood, Reg M.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some mathematical results concerning hessians of binding polynomials and co-operativity coefficients</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>1980-01-01</date><risdate>1980</risdate><volume>85</volume><issue>1</issue><spage>45</spage><epage>51</epage><pages>45-51</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>A number of miscellaneous results concerning binding polynomials, saturation functions, Hill plot slopes, co-operativity coefficients and steady-state rate equations are presented. A theorem of Newton and Sylvester is of value in understanding the dependence of the nature of the zeros of binding polynomials on the signs of successive co-operativity coefficients. Real rational functions of degree
n :
n +
r with positive coefficients can have at most n turning points for
r > 0 or
n − 1 for
r = 0. For
n binding sites the Hill plot can have at most
n − 2 changes in sign of homotropic co-operativity and for this it is necessary but not sufficient for co-operativity coefficients to alternate in sign. The geometric significance of zeros of Hessians is given. When Hill plots have inflexions of slope unity, then the Adair constants satisfy an algebraic equation of order 6(
n−3).</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>7464161</pmid><doi>10.1016/0022-5193(80)90279-9</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5193 |
ispartof | Journal of theoretical biology, 1980-01, Vol.85 (1), p.45-51 |
issn | 0022-5193 1095-8541 |
language | eng |
recordid | cdi_proquest_miscellaneous_75437582 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Binding Sites Ligands Macromolecular Substances Models, Chemical |
title | Some mathematical results concerning hessians of binding polynomials and co-operativity coefficients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20mathematical%20results%20concerning%20hessians%20of%20binding%20polynomials%20and%20co-operativity%20coefficients&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Bardsley,%20William%20G.&rft.date=1980-01-01&rft.volume=85&rft.issue=1&rft.spage=45&rft.epage=51&rft.pages=45-51&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/0022-5193(80)90279-9&rft_dat=%3Cproquest_cross%3E75437582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=75437582&rft_id=info:pmid/7464161&rft_els_id=0022519380902799&rfr_iscdi=true |