Tutorial in Medical Decision Modeling Incorporating Waiting Lines and Queues Using Discrete Event Simulation

Abstract In most decision-analytic models in health care, it is assumed that there is treatment without delay and availability of all required resources. Therefore, waiting times caused by limited resources and their impact on treatment effects and costs often remain unconsidered. Queuing theory ena...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Value in health 2010-06, Vol.13 (4), p.501-506
Hauptverfasser: Jahn, Beate, PhD, Theurl, Engelbert, PhD, Siebert, Uwe, MPH, MSc, Pfeiffer, Karl-Peter, PhD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 506
container_issue 4
container_start_page 501
container_title Value in health
container_volume 13
creator Jahn, Beate, PhD
Theurl, Engelbert, PhD
Siebert, Uwe, MPH, MSc
Pfeiffer, Karl-Peter, PhD
description Abstract In most decision-analytic models in health care, it is assumed that there is treatment without delay and availability of all required resources. Therefore, waiting times caused by limited resources and their impact on treatment effects and costs often remain unconsidered. Queuing theory enables mathematical analysis and the derivation of several performance measures of queuing systems. Nevertheless, an analytical approach with closed formulas is not always possible. Therefore, simulation techniques are used to evaluate systems that include queuing or waiting, for example, discrete event simulation. To include queuing in decision-analytic models requires a basic knowledge of queuing theory and of the underlying interrelationships. This tutorial introduces queuing theory. Analysts and decision-makers get an understanding of queue characteristics, modeling features, and its strength. Conceptual issues are covered, but the emphasis is on practical issues like modeling the arrival of patients. The treatment of coronary artery disease with percutaneous coronary intervention including stent placement serves as an illustrative queuing example. Discrete event simulation is applied to explicitly model resource capacities, to incorporate waiting lines and queues in the decision-analytic modeling example.
doi_str_mv 10.1111/j.1524-4733.2010.00707.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754137169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S1098301510600873</els_id><sourcerecordid>754137169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6297-7e59f5123ac872f4f4d9a19c8d16a28f9d87856a9caa7f54c693f041cc90ddbb3</originalsourceid><addsrcrecordid>eNqNUk1v1DAQjRCIfsBfQLlx2u04juNYQkjQLrTSIoTawtHy2hPkJWtv7aR0_z2TbumBC_VlxuP3nkfzpihKBnNG52Q9Z6KqZ7XkfF4BVQEkyPnds-Lw8eE55aDaGQcmDoqjnNcA0PBKvCwOKuC1EAIOi_5qHGLypi99KL-g85bSM7Q--0iF6LD34Wd5EWxM25jMMN1-GH8flz5gLk1w5bcRR0qv81Q-89kmHLBc3GIYyku_GXsixvCqeNGZPuPrh3hcXH9aXJ2ez5ZfP1-cfljObFMpOZMoVCdYxY1tZdXVXe2UYcq2jjWmajvlWtmKxihrjOxEbRvFO6iZtQqcW634cfF2r7tN8Yb6GvSGWsK-NwHjmLUUNeOSEe2_SF4DZ6puCNnukTbFnBN2epv8xqSdZqAnU_RaT7PX0-z1ZIq-N0XfEfXNwyfjaoPukfjXBQK82wN--x53TxbW388XlBD9456ONNNbj0ln6zFYcjOhHbSL_ilNvv9HxJLz0zr8wh3mdRxTIM8007nSoC-n3ZpWi0ED0JLcH8F8xQk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734031946</pqid></control><display><type>article</type><title>Tutorial in Medical Decision Modeling Incorporating Waiting Lines and Queues Using Discrete Event Simulation</title><source>MEDLINE</source><source>Wiley Journals</source><source>Elsevier ScienceDirect Journals Complete</source><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Jahn, Beate, PhD ; Theurl, Engelbert, PhD ; Siebert, Uwe, MPH, MSc ; Pfeiffer, Karl-Peter, PhD</creator><creatorcontrib>Jahn, Beate, PhD ; Theurl, Engelbert, PhD ; Siebert, Uwe, MPH, MSc ; Pfeiffer, Karl-Peter, PhD</creatorcontrib><description>Abstract In most decision-analytic models in health care, it is assumed that there is treatment without delay and availability of all required resources. Therefore, waiting times caused by limited resources and their impact on treatment effects and costs often remain unconsidered. Queuing theory enables mathematical analysis and the derivation of several performance measures of queuing systems. Nevertheless, an analytical approach with closed formulas is not always possible. Therefore, simulation techniques are used to evaluate systems that include queuing or waiting, for example, discrete event simulation. To include queuing in decision-analytic models requires a basic knowledge of queuing theory and of the underlying interrelationships. This tutorial introduces queuing theory. Analysts and decision-makers get an understanding of queue characteristics, modeling features, and its strength. Conceptual issues are covered, but the emphasis is on practical issues like modeling the arrival of patients. The treatment of coronary artery disease with percutaneous coronary intervention including stent placement serves as an illustrative queuing example. Discrete event simulation is applied to explicitly model resource capacities, to incorporate waiting lines and queues in the decision-analytic modeling example.</description><identifier>ISSN: 1098-3015</identifier><identifier>EISSN: 1524-4733</identifier><identifier>DOI: 10.1111/j.1524-4733.2010.00707.x</identifier><identifier>PMID: 20345550</identifier><language>eng</language><publisher>Malden, USA: Elsevier Inc</publisher><subject>Angioplasty, Balloon, Coronary - economics ; Appointments and Schedules ; Coronary Disease - economics ; Coronary Disease - therapy ; Cost-Benefit Analysis ; Decision Support Techniques ; Derivation ; discrete event simulation ; Health care ; Health Care Rationing ; Health costs ; Humans ; Internal Medicine ; modeling ; Models, Econometric ; queue ; Simulation ; Stents ; Tutorials ; Waiting Lists ; waiting time</subject><ispartof>Value in health, 2010-06, Vol.13 (4), p.501-506</ispartof><rights>International Society for Pharmacoeconomics and Outcomes Research (ISPOR)</rights><rights>2010 International Society for Pharmacoeconomics and Outcomes Research (ISPOR)</rights><rights>2010, International Society for Pharmacoeconomics and Outcomes Research (ISPOR)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6297-7e59f5123ac872f4f4d9a19c8d16a28f9d87856a9caa7f54c693f041cc90ddbb3</citedby><cites>FETCH-LOGICAL-c6297-7e59f5123ac872f4f4d9a19c8d16a28f9d87856a9caa7f54c693f041cc90ddbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1524-4733.2010.00707.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1111/j.1524-4733.2010.00707.x$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,3550,27924,27925,31000,45574,45575,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20345550$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jahn, Beate, PhD</creatorcontrib><creatorcontrib>Theurl, Engelbert, PhD</creatorcontrib><creatorcontrib>Siebert, Uwe, MPH, MSc</creatorcontrib><creatorcontrib>Pfeiffer, Karl-Peter, PhD</creatorcontrib><title>Tutorial in Medical Decision Modeling Incorporating Waiting Lines and Queues Using Discrete Event Simulation</title><title>Value in health</title><addtitle>Value Health</addtitle><description>Abstract In most decision-analytic models in health care, it is assumed that there is treatment without delay and availability of all required resources. Therefore, waiting times caused by limited resources and their impact on treatment effects and costs often remain unconsidered. Queuing theory enables mathematical analysis and the derivation of several performance measures of queuing systems. Nevertheless, an analytical approach with closed formulas is not always possible. Therefore, simulation techniques are used to evaluate systems that include queuing or waiting, for example, discrete event simulation. To include queuing in decision-analytic models requires a basic knowledge of queuing theory and of the underlying interrelationships. This tutorial introduces queuing theory. Analysts and decision-makers get an understanding of queue characteristics, modeling features, and its strength. Conceptual issues are covered, but the emphasis is on practical issues like modeling the arrival of patients. The treatment of coronary artery disease with percutaneous coronary intervention including stent placement serves as an illustrative queuing example. Discrete event simulation is applied to explicitly model resource capacities, to incorporate waiting lines and queues in the decision-analytic modeling example.</description><subject>Angioplasty, Balloon, Coronary - economics</subject><subject>Appointments and Schedules</subject><subject>Coronary Disease - economics</subject><subject>Coronary Disease - therapy</subject><subject>Cost-Benefit Analysis</subject><subject>Decision Support Techniques</subject><subject>Derivation</subject><subject>discrete event simulation</subject><subject>Health care</subject><subject>Health Care Rationing</subject><subject>Health costs</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>modeling</subject><subject>Models, Econometric</subject><subject>queue</subject><subject>Simulation</subject><subject>Stents</subject><subject>Tutorials</subject><subject>Waiting Lists</subject><subject>waiting time</subject><issn>1098-3015</issn><issn>1524-4733</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><recordid>eNqNUk1v1DAQjRCIfsBfQLlx2u04juNYQkjQLrTSIoTawtHy2hPkJWtv7aR0_z2TbumBC_VlxuP3nkfzpihKBnNG52Q9Z6KqZ7XkfF4BVQEkyPnds-Lw8eE55aDaGQcmDoqjnNcA0PBKvCwOKuC1EAIOi_5qHGLypi99KL-g85bSM7Q--0iF6LD34Wd5EWxM25jMMN1-GH8flz5gLk1w5bcRR0qv81Q-89kmHLBc3GIYyku_GXsixvCqeNGZPuPrh3hcXH9aXJ2ez5ZfP1-cfljObFMpOZMoVCdYxY1tZdXVXe2UYcq2jjWmajvlWtmKxihrjOxEbRvFO6iZtQqcW634cfF2r7tN8Yb6GvSGWsK-NwHjmLUUNeOSEe2_SF4DZ6puCNnukTbFnBN2epv8xqSdZqAnU_RaT7PX0-z1ZIq-N0XfEfXNwyfjaoPukfjXBQK82wN--x53TxbW388XlBD9456ONNNbj0ln6zFYcjOhHbSL_ilNvv9HxJLz0zr8wh3mdRxTIM8007nSoC-n3ZpWi0ED0JLcH8F8xQk</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Jahn, Beate, PhD</creator><creator>Theurl, Engelbert, PhD</creator><creator>Siebert, Uwe, MPH, MSc</creator><creator>Pfeiffer, Karl-Peter, PhD</creator><general>Elsevier Inc</general><general>Blackwell Publishing Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QJ</scope></search><sort><creationdate>201006</creationdate><title>Tutorial in Medical Decision Modeling Incorporating Waiting Lines and Queues Using Discrete Event Simulation</title><author>Jahn, Beate, PhD ; Theurl, Engelbert, PhD ; Siebert, Uwe, MPH, MSc ; Pfeiffer, Karl-Peter, PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6297-7e59f5123ac872f4f4d9a19c8d16a28f9d87856a9caa7f54c693f041cc90ddbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Angioplasty, Balloon, Coronary - economics</topic><topic>Appointments and Schedules</topic><topic>Coronary Disease - economics</topic><topic>Coronary Disease - therapy</topic><topic>Cost-Benefit Analysis</topic><topic>Decision Support Techniques</topic><topic>Derivation</topic><topic>discrete event simulation</topic><topic>Health care</topic><topic>Health Care Rationing</topic><topic>Health costs</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>modeling</topic><topic>Models, Econometric</topic><topic>queue</topic><topic>Simulation</topic><topic>Stents</topic><topic>Tutorials</topic><topic>Waiting Lists</topic><topic>waiting time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jahn, Beate, PhD</creatorcontrib><creatorcontrib>Theurl, Engelbert, PhD</creatorcontrib><creatorcontrib>Siebert, Uwe, MPH, MSc</creatorcontrib><creatorcontrib>Pfeiffer, Karl-Peter, PhD</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><jtitle>Value in health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jahn, Beate, PhD</au><au>Theurl, Engelbert, PhD</au><au>Siebert, Uwe, MPH, MSc</au><au>Pfeiffer, Karl-Peter, PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tutorial in Medical Decision Modeling Incorporating Waiting Lines and Queues Using Discrete Event Simulation</atitle><jtitle>Value in health</jtitle><addtitle>Value Health</addtitle><date>2010-06</date><risdate>2010</risdate><volume>13</volume><issue>4</issue><spage>501</spage><epage>506</epage><pages>501-506</pages><issn>1098-3015</issn><eissn>1524-4733</eissn><abstract>Abstract In most decision-analytic models in health care, it is assumed that there is treatment without delay and availability of all required resources. Therefore, waiting times caused by limited resources and their impact on treatment effects and costs often remain unconsidered. Queuing theory enables mathematical analysis and the derivation of several performance measures of queuing systems. Nevertheless, an analytical approach with closed formulas is not always possible. Therefore, simulation techniques are used to evaluate systems that include queuing or waiting, for example, discrete event simulation. To include queuing in decision-analytic models requires a basic knowledge of queuing theory and of the underlying interrelationships. This tutorial introduces queuing theory. Analysts and decision-makers get an understanding of queue characteristics, modeling features, and its strength. Conceptual issues are covered, but the emphasis is on practical issues like modeling the arrival of patients. The treatment of coronary artery disease with percutaneous coronary intervention including stent placement serves as an illustrative queuing example. Discrete event simulation is applied to explicitly model resource capacities, to incorporate waiting lines and queues in the decision-analytic modeling example.</abstract><cop>Malden, USA</cop><pub>Elsevier Inc</pub><pmid>20345550</pmid><doi>10.1111/j.1524-4733.2010.00707.x</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1098-3015
ispartof Value in health, 2010-06, Vol.13 (4), p.501-506
issn 1098-3015
1524-4733
language eng
recordid cdi_proquest_miscellaneous_754137169
source MEDLINE; Wiley Journals; Elsevier ScienceDirect Journals Complete; Applied Social Sciences Index & Abstracts (ASSIA); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Angioplasty, Balloon, Coronary - economics
Appointments and Schedules
Coronary Disease - economics
Coronary Disease - therapy
Cost-Benefit Analysis
Decision Support Techniques
Derivation
discrete event simulation
Health care
Health Care Rationing
Health costs
Humans
Internal Medicine
modeling
Models, Econometric
queue
Simulation
Stents
Tutorials
Waiting Lists
waiting time
title Tutorial in Medical Decision Modeling Incorporating Waiting Lines and Queues Using Discrete Event Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tutorial%20in%20Medical%20Decision%20Modeling%20Incorporating%20Waiting%20Lines%20and%20Queues%20Using%20Discrete%20Event%20Simulation&rft.jtitle=Value%20in%20health&rft.au=Jahn,%20Beate,%20PhD&rft.date=2010-06&rft.volume=13&rft.issue=4&rft.spage=501&rft.epage=506&rft.pages=501-506&rft.issn=1098-3015&rft.eissn=1524-4733&rft_id=info:doi/10.1111/j.1524-4733.2010.00707.x&rft_dat=%3Cproquest_cross%3E754137169%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734031946&rft_id=info:pmid/20345550&rft_els_id=1_s2_0_S1098301510600873&rfr_iscdi=true