High-throughput generation, optimization and analysis of genome-scale metabolic models

Reconstructing a metabolic model from the genome sequence of an organism is a useful but arduous approach for predicting phenotypes. Henry et al . describe a resource that automates most of this process and apply it to create >100 new metabolic models of microbes. Genome-scale metabolic models ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nat. Biotech 2010-09, Vol.28 (9), p.977-982
Hauptverfasser: Henry, Christopher S, DeJongh, Matthew, Best, Aaron A, Frybarger, Paul M, Linsay, Ben, Stevens, Rick L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 982
container_issue 9
container_start_page 977
container_title Nat. Biotech
container_volume 28
creator Henry, Christopher S
DeJongh, Matthew
Best, Aaron A
Frybarger, Paul M
Linsay, Ben
Stevens, Rick L
description Reconstructing a metabolic model from the genome sequence of an organism is a useful but arduous approach for predicting phenotypes. Henry et al . describe a resource that automates most of this process and apply it to create >100 new metabolic models of microbes. Genome-scale metabolic models have proven to be valuable for predicting organism phenotypes from genotypes. Yet efforts to develop new models are failing to keep pace with genome sequencing. To address this problem, we introduce the Model SEED, a web-based resource for high-throughput generation, optimization and analysis of genome-scale metabolic models. The Model SEED integrates existing methods and introduces techniques to automate nearly every step of this process, taking ∼48 h to reconstruct a metabolic model from an assembled genome sequence. We apply this resource to generate 130 genome-scale metabolic models representing a taxonomically diverse set of bacteria. Twenty-two of the models were validated against available gene essentiality and Biolog data, with the average model accuracy determined to be 66% before optimization and 87% after optimization.
doi_str_mv 10.1038/nbt.1672
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_754029992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A237602264</galeid><sourcerecordid>A237602264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c608t-f2773cab8b4975cdc750f13577f94ee26a1c640270bbbd1f04173ad1e85e526c3</originalsourceid><addsrcrecordid>eNqN0ltr1UAQAOAgir0o-Ask6EMVmuPuJtlNHktRWygUvPR12WwmOVuS7HFnA9Zf7xxTezzog4Tcv5nMTiZJXnC24iyv3k1NXHGpxKPkkJeFzLis5WO6ZpXKGC_lQXKEeMsYk4WUT5MDwSomilodJjcXrl9ncR383K83c0x7mCCY6Px0mvpNdKP78esuNVNLuxnu0GHquy30I2RozQDpCNE0fnA2HX0LAz5LnnRmQHh-fz5Ovn54_-X8Iru6_nh5fnaVWcmqmHVCqdyapmqomNK2VpWs43mpVFcXAEIabmXBhGJN07S8YwVXuWk5VCWUQtr8OHm15PUYnUbrIti19dMENmrOeFXVFaGTBW2C_zYDRj06tDAMZgI_o1YlfaKua7FL9yBv_Rxo0VvEBJNUCaHXC-pp5dpNnY_B2G1KfSZyJZkQsiC1-oeirYXRUYXQOXq-F_B2L4BMhO-xNzOivvz86f_t9c2-Pf3DNjO6CZAOSD8-4hKyx98s3AaPGKDTm-BGE-6onXo7bJqGTW-HjejL-27NzQjtA_w9XbsykV5NPYRdO_9K9hMybNjZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>750206270</pqid></control><display><type>article</type><title>High-throughput generation, optimization and analysis of genome-scale metabolic models</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Henry, Christopher S ; DeJongh, Matthew ; Best, Aaron A ; Frybarger, Paul M ; Linsay, Ben ; Stevens, Rick L</creator><creatorcontrib>Henry, Christopher S ; DeJongh, Matthew ; Best, Aaron A ; Frybarger, Paul M ; Linsay, Ben ; Stevens, Rick L ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Reconstructing a metabolic model from the genome sequence of an organism is a useful but arduous approach for predicting phenotypes. Henry et al . describe a resource that automates most of this process and apply it to create &gt;100 new metabolic models of microbes. Genome-scale metabolic models have proven to be valuable for predicting organism phenotypes from genotypes. Yet efforts to develop new models are failing to keep pace with genome sequencing. To address this problem, we introduce the Model SEED, a web-based resource for high-throughput generation, optimization and analysis of genome-scale metabolic models. The Model SEED integrates existing methods and introduces techniques to automate nearly every step of this process, taking ∼48 h to reconstruct a metabolic model from an assembled genome sequence. We apply this resource to generate 130 genome-scale metabolic models representing a taxonomically diverse set of bacteria. Twenty-two of the models were validated against available gene essentiality and Biolog data, with the average model accuracy determined to be 66% before optimization and 87% after optimization.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/nbt.1672</identifier><identifier>PMID: 20802497</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114 ; 631/1647/1513 ; 631/326/41 ; 631/61/320 ; ACCURACY ; Agriculture ; BACTERIA ; Bacteria - classification ; Bacteria - genetics ; Bacteria - metabolism ; BASIC BIOLOGICAL SCIENCES ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; DNA sequencing ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; GENES ; Genes, Bacterial ; Genetic aspects ; Genome, Bacterial - genetics ; Genomes ; Genomics ; Genotype &amp; phenotype ; Genotypes ; Identification and classification ; Life Sciences ; Metabolism ; Methods ; Models, Biological ; Nucleotide sequencing ; OPTIMIZATION ; Phenotype ; resource ; SEEDS</subject><ispartof>Nat. Biotech, 2010-09, Vol.28 (9), p.977-982</ispartof><rights>Springer Nature America, Inc. 2010</rights><rights>COPYRIGHT 2010 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c608t-f2773cab8b4975cdc750f13577f94ee26a1c640270bbbd1f04173ad1e85e526c3</citedby><cites>FETCH-LOGICAL-c608t-f2773cab8b4975cdc750f13577f94ee26a1c640270bbbd1f04173ad1e85e526c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nbt.1672$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nbt.1672$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20802497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1018898$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Henry, Christopher S</creatorcontrib><creatorcontrib>DeJongh, Matthew</creatorcontrib><creatorcontrib>Best, Aaron A</creatorcontrib><creatorcontrib>Frybarger, Paul M</creatorcontrib><creatorcontrib>Linsay, Ben</creatorcontrib><creatorcontrib>Stevens, Rick L</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>High-throughput generation, optimization and analysis of genome-scale metabolic models</title><title>Nat. Biotech</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Reconstructing a metabolic model from the genome sequence of an organism is a useful but arduous approach for predicting phenotypes. Henry et al . describe a resource that automates most of this process and apply it to create &gt;100 new metabolic models of microbes. Genome-scale metabolic models have proven to be valuable for predicting organism phenotypes from genotypes. Yet efforts to develop new models are failing to keep pace with genome sequencing. To address this problem, we introduce the Model SEED, a web-based resource for high-throughput generation, optimization and analysis of genome-scale metabolic models. The Model SEED integrates existing methods and introduces techniques to automate nearly every step of this process, taking ∼48 h to reconstruct a metabolic model from an assembled genome sequence. We apply this resource to generate 130 genome-scale metabolic models representing a taxonomically diverse set of bacteria. Twenty-two of the models were validated against available gene essentiality and Biolog data, with the average model accuracy determined to be 66% before optimization and 87% after optimization.</description><subject>631/114</subject><subject>631/1647/1513</subject><subject>631/326/41</subject><subject>631/61/320</subject><subject>ACCURACY</subject><subject>Agriculture</subject><subject>BACTERIA</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>DNA sequencing</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>GENES</subject><subject>Genes, Bacterial</subject><subject>Genetic aspects</subject><subject>Genome, Bacterial - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype &amp; phenotype</subject><subject>Genotypes</subject><subject>Identification and classification</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Methods</subject><subject>Models, Biological</subject><subject>Nucleotide sequencing</subject><subject>OPTIMIZATION</subject><subject>Phenotype</subject><subject>resource</subject><subject>SEEDS</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0ltr1UAQAOAgir0o-Ask6EMVmuPuJtlNHktRWygUvPR12WwmOVuS7HFnA9Zf7xxTezzog4Tcv5nMTiZJXnC24iyv3k1NXHGpxKPkkJeFzLis5WO6ZpXKGC_lQXKEeMsYk4WUT5MDwSomilodJjcXrl9ncR383K83c0x7mCCY6Px0mvpNdKP78esuNVNLuxnu0GHquy30I2RozQDpCNE0fnA2HX0LAz5LnnRmQHh-fz5Ovn54_-X8Iru6_nh5fnaVWcmqmHVCqdyapmqomNK2VpWs43mpVFcXAEIabmXBhGJN07S8YwVXuWk5VCWUQtr8OHm15PUYnUbrIti19dMENmrOeFXVFaGTBW2C_zYDRj06tDAMZgI_o1YlfaKua7FL9yBv_Rxo0VvEBJNUCaHXC-pp5dpNnY_B2G1KfSZyJZkQsiC1-oeirYXRUYXQOXq-F_B2L4BMhO-xNzOivvz86f_t9c2-Pf3DNjO6CZAOSD8-4hKyx98s3AaPGKDTm-BGE-6onXo7bJqGTW-HjejL-27NzQjtA_w9XbsykV5NPYRdO_9K9hMybNjZ</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Henry, Christopher S</creator><creator>DeJongh, Matthew</creator><creator>Best, Aaron A</creator><creator>Frybarger, Paul M</creator><creator>Linsay, Ben</creator><creator>Stevens, Rick L</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20100901</creationdate><title>High-throughput generation, optimization and analysis of genome-scale metabolic models</title><author>Henry, Christopher S ; DeJongh, Matthew ; Best, Aaron A ; Frybarger, Paul M ; Linsay, Ben ; Stevens, Rick L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c608t-f2773cab8b4975cdc750f13577f94ee26a1c640270bbbd1f04173ad1e85e526c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>631/114</topic><topic>631/1647/1513</topic><topic>631/326/41</topic><topic>631/61/320</topic><topic>ACCURACY</topic><topic>Agriculture</topic><topic>BACTERIA</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>DNA sequencing</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>GENES</topic><topic>Genes, Bacterial</topic><topic>Genetic aspects</topic><topic>Genome, Bacterial - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype &amp; phenotype</topic><topic>Genotypes</topic><topic>Identification and classification</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Methods</topic><topic>Models, Biological</topic><topic>Nucleotide sequencing</topic><topic>OPTIMIZATION</topic><topic>Phenotype</topic><topic>resource</topic><topic>SEEDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henry, Christopher S</creatorcontrib><creatorcontrib>DeJongh, Matthew</creatorcontrib><creatorcontrib>Best, Aaron A</creatorcontrib><creatorcontrib>Frybarger, Paul M</creatorcontrib><creatorcontrib>Linsay, Ben</creatorcontrib><creatorcontrib>Stevens, Rick L</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nat. Biotech</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henry, Christopher S</au><au>DeJongh, Matthew</au><au>Best, Aaron A</au><au>Frybarger, Paul M</au><au>Linsay, Ben</au><au>Stevens, Rick L</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-throughput generation, optimization and analysis of genome-scale metabolic models</atitle><jtitle>Nat. Biotech</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>28</volume><issue>9</issue><spage>977</spage><epage>982</epage><pages>977-982</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><abstract>Reconstructing a metabolic model from the genome sequence of an organism is a useful but arduous approach for predicting phenotypes. Henry et al . describe a resource that automates most of this process and apply it to create &gt;100 new metabolic models of microbes. Genome-scale metabolic models have proven to be valuable for predicting organism phenotypes from genotypes. Yet efforts to develop new models are failing to keep pace with genome sequencing. To address this problem, we introduce the Model SEED, a web-based resource for high-throughput generation, optimization and analysis of genome-scale metabolic models. The Model SEED integrates existing methods and introduces techniques to automate nearly every step of this process, taking ∼48 h to reconstruct a metabolic model from an assembled genome sequence. We apply this resource to generate 130 genome-scale metabolic models representing a taxonomically diverse set of bacteria. Twenty-two of the models were validated against available gene essentiality and Biolog data, with the average model accuracy determined to be 66% before optimization and 87% after optimization.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>20802497</pmid><doi>10.1038/nbt.1672</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nat. Biotech, 2010-09, Vol.28 (9), p.977-982
issn 1087-0156
1546-1696
language eng
recordid cdi_proquest_miscellaneous_754029992
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 631/114
631/1647/1513
631/326/41
631/61/320
ACCURACY
Agriculture
BACTERIA
Bacteria - classification
Bacteria - genetics
Bacteria - metabolism
BASIC BIOLOGICAL SCIENCES
Bioinformatics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
DNA sequencing
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
GENES
Genes, Bacterial
Genetic aspects
Genome, Bacterial - genetics
Genomes
Genomics
Genotype & phenotype
Genotypes
Identification and classification
Life Sciences
Metabolism
Methods
Models, Biological
Nucleotide sequencing
OPTIMIZATION
Phenotype
resource
SEEDS
title High-throughput generation, optimization and analysis of genome-scale metabolic models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-throughput%20generation,%20optimization%20and%20analysis%20of%20genome-scale%20metabolic%20models&rft.jtitle=Nat.%20Biotech&rft.au=Henry,%20Christopher%20S&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2010-09-01&rft.volume=28&rft.issue=9&rft.spage=977&rft.epage=982&rft.pages=977-982&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/nbt.1672&rft_dat=%3Cgale_osti_%3EA237602264%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=750206270&rft_id=info:pmid/20802497&rft_galeid=A237602264&rfr_iscdi=true