Development and testing of a synchronous-scanning underwater imaging system capable of rapid two-dimensional frame imaging

The design and construction of a synchronous-scanning underwater imaging system capable of rapid two-dimensional scanning are described. The imager employs a 7-W, all-lines, argon-ion laser in onjunction with a galvanometrically driven raster scanner and an image-dissector tube receiver. The imager...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Optics 1993-07, Vol.32 (19), p.3520-3530
Hauptverfasser: KULP, T. J, GARVIS, D, KENNEDY, R, SALMON, T, COOPER, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3530
container_issue 19
container_start_page 3520
container_title Applied Optics
container_volume 32
creator KULP, T. J
GARVIS, D
KENNEDY, R
SALMON, T
COOPER, K
description The design and construction of a synchronous-scanning underwater imaging system capable of rapid two-dimensional scanning are described. The imager employs a 7-W, all-lines, argon-ion laser in onjunction with a galvanometrically driven raster scanner and an image-dissector tube receiver. The imager is capable of directly generating real-time RS-170 video imagery. The results of an in-water test of the imaging system, in which a high-contrast imaging test pattern was imaged, demonstrate operating anges of up to 4 attenuation lengths (AL) when the test was run at real-time frame rates, ranges of 5.1-5.5 AL when the system operated with an eight-frame running average, and ranges of 6.3 AL when a 128-frame running average was used. The system performance was compared with that of several floodlight/silicon-intensified-target TV camera configurations, which produced a maximum imaging range of ∼2.6 AL. Also, an imaging configuration that used the raster-scanned beam of the laser as an illumination source for the sil n-intensified-target camera was tested. That system had an ultimate range of ∼ 4 AL.
doi_str_mv 10.1364/AO.32.003520
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_754029986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18213845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-4bb37f59763094c2bb3921479c559656e81052d5d5757b41e25b27b67418ca103</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EokPLjjWKEIINGfx2vByVV6VKsylry3Fu2qDEDnam1fDre0cz7ZKV5evvHvmcQ8g7RtdMaPl1s10LvqZUKE5fkBVTwtZScf6SrChOa22FOiNvSvlDKeONtq_JGacNt9boFfn3De5hTPMEcal87KoFyjLE2yr1la_KPoa7nGLalboEH-PhZRc7yA9-gVwNk789jMq-LDBVwc--HeGwm_08oNhDqrsBtcuQoh-rPvsJnrYuyKvejwXens5z8vvH95vLX_X19ufV5ea6DtzSpZZtK0yv8LeCWhk4Xi1n0tiglNVKQ8Oo4p3qlFGmlQy4arlptZGsCZ5RcU4-HHUTOnMlDAuEu5BihLA4TTHDpkHo8xGac_q7wwzcNJQA4-gjoHtnlKQYWaOR_PRfkjWciUYqBL8cwZBTKRl6N2e0nveOUXeozm22TnB3rA7x9yfdXTtB9ww_dYXAxxPgsYsRs4xhKM-cpAbbFeIRrg-gVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18213845</pqid></control><display><type>article</type><title>Development and testing of a synchronous-scanning underwater imaging system capable of rapid two-dimensional frame imaging</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>KULP, T. J ; GARVIS, D ; KENNEDY, R ; SALMON, T ; COOPER, K</creator><creatorcontrib>KULP, T. J ; GARVIS, D ; KENNEDY, R ; SALMON, T ; COOPER, K</creatorcontrib><description>The design and construction of a synchronous-scanning underwater imaging system capable of rapid two-dimensional scanning are described. The imager employs a 7-W, all-lines, argon-ion laser in onjunction with a galvanometrically driven raster scanner and an image-dissector tube receiver. The imager is capable of directly generating real-time RS-170 video imagery. The results of an in-water test of the imaging system, in which a high-contrast imaging test pattern was imaged, demonstrate operating anges of up to 4 attenuation lengths (AL) when the test was run at real-time frame rates, ranges of 5.1-5.5 AL when the system operated with an eight-frame running average, and ranges of 6.3 AL when a 128-frame running average was used. The system performance was compared with that of several floodlight/silicon-intensified-target TV camera configurations, which produced a maximum imaging range of ∼2.6 AL. Also, an imaging configuration that used the raster-scanned beam of the laser as an illumination source for the sil n-intensified-target camera was tested. That system had an ultimate range of ∼ 4 AL.</description><identifier>ISSN: 0003-6935</identifier><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.32.003520</identifier><identifier>PMID: 20829976</identifier><identifier>CODEN: APOPAI</identifier><language>eng</language><publisher>Washington, DC: Optical Society of America</publisher><subject>440600 - Optical Instrumentation- (1990-) ; DESIGN ; ELECTROMAGNETIC RADIATION ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Image forming and processing ; IMAGE SCANNERS ; Imaging and optical processing ; LASER RADIATION ; LEVELS ; MILLIWATT POWER RANGE ; OPTICAL SYSTEMS ; Optics ; OTHER INSTRUMENTATION ; PERFORMANCE TESTING ; Physics ; POWER RANGE ; POWER RANGE 01-10 W ; POWER RANGE 10-100 W ; RADIATIONS ; RESOLUTION ; SPECTRA ; TESTING ; UNDERWATER ; VISIBLE SPECTRA ; WATT POWER RANGE</subject><ispartof>Applied Optics, 1993-07, Vol.32 (19), p.3520-3530</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-4bb37f59763094c2bb3921479c559656e81052d5d5757b41e25b27b67418ca103</citedby><cites>FETCH-LOGICAL-c290t-4bb37f59763094c2bb3921479c559656e81052d5d5757b41e25b27b67418ca103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4072863$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20829976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6036488$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>KULP, T. J</creatorcontrib><creatorcontrib>GARVIS, D</creatorcontrib><creatorcontrib>KENNEDY, R</creatorcontrib><creatorcontrib>SALMON, T</creatorcontrib><creatorcontrib>COOPER, K</creatorcontrib><title>Development and testing of a synchronous-scanning underwater imaging system capable of rapid two-dimensional frame imaging</title><title>Applied Optics</title><addtitle>Appl Opt</addtitle><description>The design and construction of a synchronous-scanning underwater imaging system capable of rapid two-dimensional scanning are described. The imager employs a 7-W, all-lines, argon-ion laser in onjunction with a galvanometrically driven raster scanner and an image-dissector tube receiver. The imager is capable of directly generating real-time RS-170 video imagery. The results of an in-water test of the imaging system, in which a high-contrast imaging test pattern was imaged, demonstrate operating anges of up to 4 attenuation lengths (AL) when the test was run at real-time frame rates, ranges of 5.1-5.5 AL when the system operated with an eight-frame running average, and ranges of 6.3 AL when a 128-frame running average was used. The system performance was compared with that of several floodlight/silicon-intensified-target TV camera configurations, which produced a maximum imaging range of ∼2.6 AL. Also, an imaging configuration that used the raster-scanned beam of the laser as an illumination source for the sil n-intensified-target camera was tested. That system had an ultimate range of ∼ 4 AL.</description><subject>440600 - Optical Instrumentation- (1990-)</subject><subject>DESIGN</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Image forming and processing</subject><subject>IMAGE SCANNERS</subject><subject>Imaging and optical processing</subject><subject>LASER RADIATION</subject><subject>LEVELS</subject><subject>MILLIWATT POWER RANGE</subject><subject>OPTICAL SYSTEMS</subject><subject>Optics</subject><subject>OTHER INSTRUMENTATION</subject><subject>PERFORMANCE TESTING</subject><subject>Physics</subject><subject>POWER RANGE</subject><subject>POWER RANGE 01-10 W</subject><subject>POWER RANGE 10-100 W</subject><subject>RADIATIONS</subject><subject>RESOLUTION</subject><subject>SPECTRA</subject><subject>TESTING</subject><subject>UNDERWATER</subject><subject>VISIBLE SPECTRA</subject><subject>WATT POWER RANGE</subject><issn>0003-6935</issn><issn>1559-128X</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1DAUhS0EokPLjjWKEIINGfx2vByVV6VKsylry3Fu2qDEDnam1fDre0cz7ZKV5evvHvmcQ8g7RtdMaPl1s10LvqZUKE5fkBVTwtZScf6SrChOa22FOiNvSvlDKeONtq_JGacNt9boFfn3De5hTPMEcal87KoFyjLE2yr1la_KPoa7nGLalboEH-PhZRc7yA9-gVwNk789jMq-LDBVwc--HeGwm_08oNhDqrsBtcuQoh-rPvsJnrYuyKvejwXens5z8vvH95vLX_X19ufV5ea6DtzSpZZtK0yv8LeCWhk4Xi1n0tiglNVKQ8Oo4p3qlFGmlQy4arlptZGsCZ5RcU4-HHUTOnMlDAuEu5BihLA4TTHDpkHo8xGac_q7wwzcNJQA4-gjoHtnlKQYWaOR_PRfkjWciUYqBL8cwZBTKRl6N2e0nveOUXeozm22TnB3rA7x9yfdXTtB9ww_dYXAxxPgsYsRs4xhKM-cpAbbFeIRrg-gVw</recordid><startdate>19930701</startdate><enddate>19930701</enddate><creator>KULP, T. J</creator><creator>GARVIS, D</creator><creator>KENNEDY, R</creator><creator>SALMON, T</creator><creator>COOPER, K</creator><general>Optical Society of America</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19930701</creationdate><title>Development and testing of a synchronous-scanning underwater imaging system capable of rapid two-dimensional frame imaging</title><author>KULP, T. J ; GARVIS, D ; KENNEDY, R ; SALMON, T ; COOPER, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-4bb37f59763094c2bb3921479c559656e81052d5d5757b41e25b27b67418ca103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>440600 - Optical Instrumentation- (1990-)</topic><topic>DESIGN</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Image forming and processing</topic><topic>IMAGE SCANNERS</topic><topic>Imaging and optical processing</topic><topic>LASER RADIATION</topic><topic>LEVELS</topic><topic>MILLIWATT POWER RANGE</topic><topic>OPTICAL SYSTEMS</topic><topic>Optics</topic><topic>OTHER INSTRUMENTATION</topic><topic>PERFORMANCE TESTING</topic><topic>Physics</topic><topic>POWER RANGE</topic><topic>POWER RANGE 01-10 W</topic><topic>POWER RANGE 10-100 W</topic><topic>RADIATIONS</topic><topic>RESOLUTION</topic><topic>SPECTRA</topic><topic>TESTING</topic><topic>UNDERWATER</topic><topic>VISIBLE SPECTRA</topic><topic>WATT POWER RANGE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KULP, T. J</creatorcontrib><creatorcontrib>GARVIS, D</creatorcontrib><creatorcontrib>KENNEDY, R</creatorcontrib><creatorcontrib>SALMON, T</creatorcontrib><creatorcontrib>COOPER, K</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Applied Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KULP, T. J</au><au>GARVIS, D</au><au>KENNEDY, R</au><au>SALMON, T</au><au>COOPER, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and testing of a synchronous-scanning underwater imaging system capable of rapid two-dimensional frame imaging</atitle><jtitle>Applied Optics</jtitle><addtitle>Appl Opt</addtitle><date>1993-07-01</date><risdate>1993</risdate><volume>32</volume><issue>19</issue><spage>3520</spage><epage>3530</epage><pages>3520-3530</pages><issn>0003-6935</issn><issn>1559-128X</issn><eissn>1539-4522</eissn><coden>APOPAI</coden><abstract>The design and construction of a synchronous-scanning underwater imaging system capable of rapid two-dimensional scanning are described. The imager employs a 7-W, all-lines, argon-ion laser in onjunction with a galvanometrically driven raster scanner and an image-dissector tube receiver. The imager is capable of directly generating real-time RS-170 video imagery. The results of an in-water test of the imaging system, in which a high-contrast imaging test pattern was imaged, demonstrate operating anges of up to 4 attenuation lengths (AL) when the test was run at real-time frame rates, ranges of 5.1-5.5 AL when the system operated with an eight-frame running average, and ranges of 6.3 AL when a 128-frame running average was used. The system performance was compared with that of several floodlight/silicon-intensified-target TV camera configurations, which produced a maximum imaging range of ∼2.6 AL. Also, an imaging configuration that used the raster-scanned beam of the laser as an illumination source for the sil n-intensified-target camera was tested. That system had an ultimate range of ∼ 4 AL.</abstract><cop>Washington, DC</cop><pub>Optical Society of America</pub><pmid>20829976</pmid><doi>10.1364/AO.32.003520</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6935
ispartof Applied Optics, 1993-07, Vol.32 (19), p.3520-3530
issn 0003-6935
1559-128X
1539-4522
language eng
recordid cdi_proquest_miscellaneous_754029986
source Alma/SFX Local Collection; Optica Publishing Group Journals
subjects 440600 - Optical Instrumentation- (1990-)
DESIGN
ELECTROMAGNETIC RADIATION
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Image forming and processing
IMAGE SCANNERS
Imaging and optical processing
LASER RADIATION
LEVELS
MILLIWATT POWER RANGE
OPTICAL SYSTEMS
Optics
OTHER INSTRUMENTATION
PERFORMANCE TESTING
Physics
POWER RANGE
POWER RANGE 01-10 W
POWER RANGE 10-100 W
RADIATIONS
RESOLUTION
SPECTRA
TESTING
UNDERWATER
VISIBLE SPECTRA
WATT POWER RANGE
title Development and testing of a synchronous-scanning underwater imaging system capable of rapid two-dimensional frame imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A44%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20testing%20of%20a%20synchronous-scanning%20underwater%20imaging%20system%20capable%20of%20rapid%20two-dimensional%20frame%20imaging&rft.jtitle=Applied%20Optics&rft.au=KULP,%20T.%20J&rft.date=1993-07-01&rft.volume=32&rft.issue=19&rft.spage=3520&rft.epage=3530&rft.pages=3520-3530&rft.issn=0003-6935&rft.eissn=1539-4522&rft.coden=APOPAI&rft_id=info:doi/10.1364/AO.32.003520&rft_dat=%3Cproquest_osti_%3E18213845%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18213845&rft_id=info:pmid/20829976&rfr_iscdi=true