Development and testing of a synchronous-scanning underwater imaging system capable of rapid two-dimensional frame imaging
The design and construction of a synchronous-scanning underwater imaging system capable of rapid two-dimensional scanning are described. The imager employs a 7-W, all-lines, argon-ion laser in onjunction with a galvanometrically driven raster scanner and an image-dissector tube receiver. The imager...
Gespeichert in:
Veröffentlicht in: | Applied Optics 1993-07, Vol.32 (19), p.3520-3530 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3530 |
---|---|
container_issue | 19 |
container_start_page | 3520 |
container_title | Applied Optics |
container_volume | 32 |
creator | KULP, T. J GARVIS, D KENNEDY, R SALMON, T COOPER, K |
description | The design and construction of a synchronous-scanning underwater imaging system capable of rapid two-dimensional scanning are described. The imager employs a 7-W, all-lines, argon-ion laser in onjunction with a galvanometrically driven raster scanner and an image-dissector tube receiver. The imager is capable of directly generating real-time RS-170 video imagery. The results of an in-water test of the imaging system, in which a high-contrast imaging test pattern was imaged, demonstrate operating anges of up to 4 attenuation lengths (AL) when the test was run at real-time frame rates, ranges of 5.1-5.5 AL when the system operated with an eight-frame running average, and ranges of 6.3 AL when a 128-frame running average was used. The system performance was compared with that of several floodlight/silicon-intensified-target TV camera configurations, which produced a maximum imaging range of ∼2.6 AL. Also, an imaging configuration that used the raster-scanned beam of the laser as an illumination source for the sil n-intensified-target camera was tested. That system had an ultimate range of ∼ 4 AL. |
doi_str_mv | 10.1364/AO.32.003520 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_754029986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18213845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-4bb37f59763094c2bb3921479c559656e81052d5d5757b41e25b27b67418ca103</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EokPLjjWKEIINGfx2vByVV6VKsylry3Fu2qDEDnam1fDre0cz7ZKV5evvHvmcQ8g7RtdMaPl1s10LvqZUKE5fkBVTwtZScf6SrChOa22FOiNvSvlDKeONtq_JGacNt9boFfn3De5hTPMEcal87KoFyjLE2yr1la_KPoa7nGLalboEH-PhZRc7yA9-gVwNk789jMq-LDBVwc--HeGwm_08oNhDqrsBtcuQoh-rPvsJnrYuyKvejwXens5z8vvH95vLX_X19ufV5ea6DtzSpZZtK0yv8LeCWhk4Xi1n0tiglNVKQ8Oo4p3qlFGmlQy4arlptZGsCZ5RcU4-HHUTOnMlDAuEu5BihLA4TTHDpkHo8xGac_q7wwzcNJQA4-gjoHtnlKQYWaOR_PRfkjWciUYqBL8cwZBTKRl6N2e0nveOUXeozm22TnB3rA7x9yfdXTtB9ww_dYXAxxPgsYsRs4xhKM-cpAbbFeIRrg-gVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18213845</pqid></control><display><type>article</type><title>Development and testing of a synchronous-scanning underwater imaging system capable of rapid two-dimensional frame imaging</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>KULP, T. J ; GARVIS, D ; KENNEDY, R ; SALMON, T ; COOPER, K</creator><creatorcontrib>KULP, T. J ; GARVIS, D ; KENNEDY, R ; SALMON, T ; COOPER, K</creatorcontrib><description>The design and construction of a synchronous-scanning underwater imaging system capable of rapid two-dimensional scanning are described. The imager employs a 7-W, all-lines, argon-ion laser in onjunction with a galvanometrically driven raster scanner and an image-dissector tube receiver. The imager is capable of directly generating real-time RS-170 video imagery. The results of an in-water test of the imaging system, in which a high-contrast imaging test pattern was imaged, demonstrate operating anges of up to 4 attenuation lengths (AL) when the test was run at real-time frame rates, ranges of 5.1-5.5 AL when the system operated with an eight-frame running average, and ranges of 6.3 AL when a 128-frame running average was used. The system performance was compared with that of several floodlight/silicon-intensified-target TV camera configurations, which produced a maximum imaging range of ∼2.6 AL. Also, an imaging configuration that used the raster-scanned beam of the laser as an illumination source for the sil n-intensified-target camera was tested. That system had an ultimate range of ∼ 4 AL.</description><identifier>ISSN: 0003-6935</identifier><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.32.003520</identifier><identifier>PMID: 20829976</identifier><identifier>CODEN: APOPAI</identifier><language>eng</language><publisher>Washington, DC: Optical Society of America</publisher><subject>440600 - Optical Instrumentation- (1990-) ; DESIGN ; ELECTROMAGNETIC RADIATION ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Image forming and processing ; IMAGE SCANNERS ; Imaging and optical processing ; LASER RADIATION ; LEVELS ; MILLIWATT POWER RANGE ; OPTICAL SYSTEMS ; Optics ; OTHER INSTRUMENTATION ; PERFORMANCE TESTING ; Physics ; POWER RANGE ; POWER RANGE 01-10 W ; POWER RANGE 10-100 W ; RADIATIONS ; RESOLUTION ; SPECTRA ; TESTING ; UNDERWATER ; VISIBLE SPECTRA ; WATT POWER RANGE</subject><ispartof>Applied Optics, 1993-07, Vol.32 (19), p.3520-3530</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-4bb37f59763094c2bb3921479c559656e81052d5d5757b41e25b27b67418ca103</citedby><cites>FETCH-LOGICAL-c290t-4bb37f59763094c2bb3921479c559656e81052d5d5757b41e25b27b67418ca103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4072863$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20829976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6036488$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>KULP, T. J</creatorcontrib><creatorcontrib>GARVIS, D</creatorcontrib><creatorcontrib>KENNEDY, R</creatorcontrib><creatorcontrib>SALMON, T</creatorcontrib><creatorcontrib>COOPER, K</creatorcontrib><title>Development and testing of a synchronous-scanning underwater imaging system capable of rapid two-dimensional frame imaging</title><title>Applied Optics</title><addtitle>Appl Opt</addtitle><description>The design and construction of a synchronous-scanning underwater imaging system capable of rapid two-dimensional scanning are described. The imager employs a 7-W, all-lines, argon-ion laser in onjunction with a galvanometrically driven raster scanner and an image-dissector tube receiver. The imager is capable of directly generating real-time RS-170 video imagery. The results of an in-water test of the imaging system, in which a high-contrast imaging test pattern was imaged, demonstrate operating anges of up to 4 attenuation lengths (AL) when the test was run at real-time frame rates, ranges of 5.1-5.5 AL when the system operated with an eight-frame running average, and ranges of 6.3 AL when a 128-frame running average was used. The system performance was compared with that of several floodlight/silicon-intensified-target TV camera configurations, which produced a maximum imaging range of ∼2.6 AL. Also, an imaging configuration that used the raster-scanned beam of the laser as an illumination source for the sil n-intensified-target camera was tested. That system had an ultimate range of ∼ 4 AL.</description><subject>440600 - Optical Instrumentation- (1990-)</subject><subject>DESIGN</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Image forming and processing</subject><subject>IMAGE SCANNERS</subject><subject>Imaging and optical processing</subject><subject>LASER RADIATION</subject><subject>LEVELS</subject><subject>MILLIWATT POWER RANGE</subject><subject>OPTICAL SYSTEMS</subject><subject>Optics</subject><subject>OTHER INSTRUMENTATION</subject><subject>PERFORMANCE TESTING</subject><subject>Physics</subject><subject>POWER RANGE</subject><subject>POWER RANGE 01-10 W</subject><subject>POWER RANGE 10-100 W</subject><subject>RADIATIONS</subject><subject>RESOLUTION</subject><subject>SPECTRA</subject><subject>TESTING</subject><subject>UNDERWATER</subject><subject>VISIBLE SPECTRA</subject><subject>WATT POWER RANGE</subject><issn>0003-6935</issn><issn>1559-128X</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1DAUhS0EokPLjjWKEIINGfx2vByVV6VKsylry3Fu2qDEDnam1fDre0cz7ZKV5evvHvmcQ8g7RtdMaPl1s10LvqZUKE5fkBVTwtZScf6SrChOa22FOiNvSvlDKeONtq_JGacNt9boFfn3De5hTPMEcal87KoFyjLE2yr1la_KPoa7nGLalboEH-PhZRc7yA9-gVwNk789jMq-LDBVwc--HeGwm_08oNhDqrsBtcuQoh-rPvsJnrYuyKvejwXens5z8vvH95vLX_X19ufV5ea6DtzSpZZtK0yv8LeCWhk4Xi1n0tiglNVKQ8Oo4p3qlFGmlQy4arlptZGsCZ5RcU4-HHUTOnMlDAuEu5BihLA4TTHDpkHo8xGac_q7wwzcNJQA4-gjoHtnlKQYWaOR_PRfkjWciUYqBL8cwZBTKRl6N2e0nveOUXeozm22TnB3rA7x9yfdXTtB9ww_dYXAxxPgsYsRs4xhKM-cpAbbFeIRrg-gVw</recordid><startdate>19930701</startdate><enddate>19930701</enddate><creator>KULP, T. J</creator><creator>GARVIS, D</creator><creator>KENNEDY, R</creator><creator>SALMON, T</creator><creator>COOPER, K</creator><general>Optical Society of America</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19930701</creationdate><title>Development and testing of a synchronous-scanning underwater imaging system capable of rapid two-dimensional frame imaging</title><author>KULP, T. J ; GARVIS, D ; KENNEDY, R ; SALMON, T ; COOPER, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-4bb37f59763094c2bb3921479c559656e81052d5d5757b41e25b27b67418ca103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>440600 - Optical Instrumentation- (1990-)</topic><topic>DESIGN</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Image forming and processing</topic><topic>IMAGE SCANNERS</topic><topic>Imaging and optical processing</topic><topic>LASER RADIATION</topic><topic>LEVELS</topic><topic>MILLIWATT POWER RANGE</topic><topic>OPTICAL SYSTEMS</topic><topic>Optics</topic><topic>OTHER INSTRUMENTATION</topic><topic>PERFORMANCE TESTING</topic><topic>Physics</topic><topic>POWER RANGE</topic><topic>POWER RANGE 01-10 W</topic><topic>POWER RANGE 10-100 W</topic><topic>RADIATIONS</topic><topic>RESOLUTION</topic><topic>SPECTRA</topic><topic>TESTING</topic><topic>UNDERWATER</topic><topic>VISIBLE SPECTRA</topic><topic>WATT POWER RANGE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KULP, T. J</creatorcontrib><creatorcontrib>GARVIS, D</creatorcontrib><creatorcontrib>KENNEDY, R</creatorcontrib><creatorcontrib>SALMON, T</creatorcontrib><creatorcontrib>COOPER, K</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Applied Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KULP, T. J</au><au>GARVIS, D</au><au>KENNEDY, R</au><au>SALMON, T</au><au>COOPER, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and testing of a synchronous-scanning underwater imaging system capable of rapid two-dimensional frame imaging</atitle><jtitle>Applied Optics</jtitle><addtitle>Appl Opt</addtitle><date>1993-07-01</date><risdate>1993</risdate><volume>32</volume><issue>19</issue><spage>3520</spage><epage>3530</epage><pages>3520-3530</pages><issn>0003-6935</issn><issn>1559-128X</issn><eissn>1539-4522</eissn><coden>APOPAI</coden><abstract>The design and construction of a synchronous-scanning underwater imaging system capable of rapid two-dimensional scanning are described. The imager employs a 7-W, all-lines, argon-ion laser in onjunction with a galvanometrically driven raster scanner and an image-dissector tube receiver. The imager is capable of directly generating real-time RS-170 video imagery. The results of an in-water test of the imaging system, in which a high-contrast imaging test pattern was imaged, demonstrate operating anges of up to 4 attenuation lengths (AL) when the test was run at real-time frame rates, ranges of 5.1-5.5 AL when the system operated with an eight-frame running average, and ranges of 6.3 AL when a 128-frame running average was used. The system performance was compared with that of several floodlight/silicon-intensified-target TV camera configurations, which produced a maximum imaging range of ∼2.6 AL. Also, an imaging configuration that used the raster-scanned beam of the laser as an illumination source for the sil n-intensified-target camera was tested. That system had an ultimate range of ∼ 4 AL.</abstract><cop>Washington, DC</cop><pub>Optical Society of America</pub><pmid>20829976</pmid><doi>10.1364/AO.32.003520</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6935 |
ispartof | Applied Optics, 1993-07, Vol.32 (19), p.3520-3530 |
issn | 0003-6935 1559-128X 1539-4522 |
language | eng |
recordid | cdi_proquest_miscellaneous_754029986 |
source | Alma/SFX Local Collection; Optica Publishing Group Journals |
subjects | 440600 - Optical Instrumentation- (1990-) DESIGN ELECTROMAGNETIC RADIATION Exact sciences and technology Fundamental areas of phenomenology (including applications) Image forming and processing IMAGE SCANNERS Imaging and optical processing LASER RADIATION LEVELS MILLIWATT POWER RANGE OPTICAL SYSTEMS Optics OTHER INSTRUMENTATION PERFORMANCE TESTING Physics POWER RANGE POWER RANGE 01-10 W POWER RANGE 10-100 W RADIATIONS RESOLUTION SPECTRA TESTING UNDERWATER VISIBLE SPECTRA WATT POWER RANGE |
title | Development and testing of a synchronous-scanning underwater imaging system capable of rapid two-dimensional frame imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A44%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20testing%20of%20a%20synchronous-scanning%20underwater%20imaging%20system%20capable%20of%20rapid%20two-dimensional%20frame%20imaging&rft.jtitle=Applied%20Optics&rft.au=KULP,%20T.%20J&rft.date=1993-07-01&rft.volume=32&rft.issue=19&rft.spage=3520&rft.epage=3530&rft.pages=3520-3530&rft.issn=0003-6935&rft.eissn=1539-4522&rft.coden=APOPAI&rft_id=info:doi/10.1364/AO.32.003520&rft_dat=%3Cproquest_osti_%3E18213845%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18213845&rft_id=info:pmid/20829976&rfr_iscdi=true |