Poly(ADP-ribose) polymerase-1 (PARP-1) and its therapeutic implications
Abstract Poly(ADP-ribose) polymerases (PARPs) are a family of cell signaling enzymes present in eukaryotes, which are involved in the poly(ADP-ribosylation) of DNA binding proteins. While an 18 member superfamily of PARPs has been identified, however PARP-1 the most abundant isoform accounts for mor...
Gespeichert in:
Veröffentlicht in: | Vascular pharmacology 2010-09, Vol.53 (3), p.77-87 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 87 |
---|---|
container_issue | 3 |
container_start_page | 77 |
container_title | Vascular pharmacology |
container_volume | 53 |
creator | Sodhi, Rupinder K Singh, Nirmal Jaggi, Amteshwar S |
description | Abstract Poly(ADP-ribose) polymerases (PARPs) are a family of cell signaling enzymes present in eukaryotes, which are involved in the poly(ADP-ribosylation) of DNA binding proteins. While an 18 member superfamily of PARPs has been identified, however PARP-1 the most abundant isoform accounts for more than 90% of its functions. PARP-1 works as DNA damage nick sensor, which uses NAD+ to form polymers of ADP-ribose (PAR) and nicotinamide. Three consequences of the activation of PARP-1 are particularly important for drug development: first, its role in DNA repair; second, its capacity to deplete cellular energetic pools, which culminates in cell dysfunction and necrosis; and third, its capacity to promote the transcription of proinflammatory genes. Consequently, pharmacological inhibition of PARP has the potential to enhance the cytotoxicity of certain DNA-damaging anticancer drugs, reduce cell necrosis (for example, in stroke or myocardial infarction) and downregulate multiple simultaneous pathways of inflammation and tissue injury (for example, in circulatory shock, colitis or diabetic complications). Through this article we have tried to develop a brief and simplified picture of the principal physiological and pathophysiological roles governed by PARP-1 and its therapeutic implications. |
doi_str_mv | 10.1016/j.vph.2010.06.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754019481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1537189110001072</els_id><sourcerecordid>754019481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-21497ae73efe84bcadc5675d5e3994019594e0d926e652e92643dc98f8bd61973</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMovn-AG-nOmUXH3KZNGgRh8A2Cg4916CR3MGNfJu3A_HtTRl24cHXzOOfA_Q4hJ0AnQIGfLyer9n2S0HCnfEIp2yL7kAsZM57K7XDOmIghl7BHDrxfUgp5zuUu2UsoZ4xLuU_uZk25Hk2vZ7Gz88bjOGrDQ4Wu8BhDNJpNn2cxjKOiNpHtfNS9h68W-87qyFZtaXXR2ab2R2RnUZQej7_nIXm7vXm9uo8fn-4erqaPsU4F6-IEUikKFAwXmKdzXRidcZGZDJmUKQWZyRSpkQlHniUYZsqMlvkinxsOUrBDcrbJbV3z2aPvVGW9xrIsamx6r0Q2pKQ5BCVslNo13jtcqNbZqnBrBVQN-NRSBXxqwKcoVwFf8Jx-p_fzCs2v44dXEFxsBBh2XFl0ymuLtUZjHepOmcb-G3_5x61LWweE5Qeu0S-b3tUBngLlE0XVy9DfUB_QUB0VCfsCXIOSnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>754019481</pqid></control><display><type>article</type><title>Poly(ADP-ribose) polymerase-1 (PARP-1) and its therapeutic implications</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Sodhi, Rupinder K ; Singh, Nirmal ; Jaggi, Amteshwar S</creator><creatorcontrib>Sodhi, Rupinder K ; Singh, Nirmal ; Jaggi, Amteshwar S</creatorcontrib><description>Abstract Poly(ADP-ribose) polymerases (PARPs) are a family of cell signaling enzymes present in eukaryotes, which are involved in the poly(ADP-ribosylation) of DNA binding proteins. While an 18 member superfamily of PARPs has been identified, however PARP-1 the most abundant isoform accounts for more than 90% of its functions. PARP-1 works as DNA damage nick sensor, which uses NAD+ to form polymers of ADP-ribose (PAR) and nicotinamide. Three consequences of the activation of PARP-1 are particularly important for drug development: first, its role in DNA repair; second, its capacity to deplete cellular energetic pools, which culminates in cell dysfunction and necrosis; and third, its capacity to promote the transcription of proinflammatory genes. Consequently, pharmacological inhibition of PARP has the potential to enhance the cytotoxicity of certain DNA-damaging anticancer drugs, reduce cell necrosis (for example, in stroke or myocardial infarction) and downregulate multiple simultaneous pathways of inflammation and tissue injury (for example, in circulatory shock, colitis or diabetic complications). Through this article we have tried to develop a brief and simplified picture of the principal physiological and pathophysiological roles governed by PARP-1 and its therapeutic implications.</description><identifier>ISSN: 1537-1891</identifier><identifier>EISSN: 1879-3649</identifier><identifier>DOI: 10.1016/j.vph.2010.06.003</identifier><identifier>PMID: 20633699</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aging - metabolism ; Animals ; Apoptosis ; Cardiovascular ; Diabetes Mellitus - drug therapy ; Diabetes Mellitus - enzymology ; DNA Repair ; HIV Infections - drug therapy ; HIV Infections - enzymology ; Humans ; Inflammation - enzymology ; Molecular Targeted Therapy ; Necrosis ; Neoplasms - drug therapy ; Neoplasms - enzymology ; PARP inhibitors ; PARP-1 ; Poly(ADP-ribose) Polymerase Inhibitors ; Poly(ADP-ribose) Polymerases - physiology ; Reperfusion Injury - drug therapy ; Reperfusion Injury - enzymology ; Signal Transduction ; Zinc Fingers</subject><ispartof>Vascular pharmacology, 2010-09, Vol.53 (3), p.77-87</ispartof><rights>Elsevier Inc.</rights><rights>2010 Elsevier Inc.</rights><rights>Copyright 2010 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-21497ae73efe84bcadc5675d5e3994019594e0d926e652e92643dc98f8bd61973</citedby><cites>FETCH-LOGICAL-c473t-21497ae73efe84bcadc5675d5e3994019594e0d926e652e92643dc98f8bd61973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.vph.2010.06.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20633699$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sodhi, Rupinder K</creatorcontrib><creatorcontrib>Singh, Nirmal</creatorcontrib><creatorcontrib>Jaggi, Amteshwar S</creatorcontrib><title>Poly(ADP-ribose) polymerase-1 (PARP-1) and its therapeutic implications</title><title>Vascular pharmacology</title><addtitle>Vascul Pharmacol</addtitle><description>Abstract Poly(ADP-ribose) polymerases (PARPs) are a family of cell signaling enzymes present in eukaryotes, which are involved in the poly(ADP-ribosylation) of DNA binding proteins. While an 18 member superfamily of PARPs has been identified, however PARP-1 the most abundant isoform accounts for more than 90% of its functions. PARP-1 works as DNA damage nick sensor, which uses NAD+ to form polymers of ADP-ribose (PAR) and nicotinamide. Three consequences of the activation of PARP-1 are particularly important for drug development: first, its role in DNA repair; second, its capacity to deplete cellular energetic pools, which culminates in cell dysfunction and necrosis; and third, its capacity to promote the transcription of proinflammatory genes. Consequently, pharmacological inhibition of PARP has the potential to enhance the cytotoxicity of certain DNA-damaging anticancer drugs, reduce cell necrosis (for example, in stroke or myocardial infarction) and downregulate multiple simultaneous pathways of inflammation and tissue injury (for example, in circulatory shock, colitis or diabetic complications). Through this article we have tried to develop a brief and simplified picture of the principal physiological and pathophysiological roles governed by PARP-1 and its therapeutic implications.</description><subject>Aging - metabolism</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Cardiovascular</subject><subject>Diabetes Mellitus - drug therapy</subject><subject>Diabetes Mellitus - enzymology</subject><subject>DNA Repair</subject><subject>HIV Infections - drug therapy</subject><subject>HIV Infections - enzymology</subject><subject>Humans</subject><subject>Inflammation - enzymology</subject><subject>Molecular Targeted Therapy</subject><subject>Necrosis</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - enzymology</subject><subject>PARP inhibitors</subject><subject>PARP-1</subject><subject>Poly(ADP-ribose) Polymerase Inhibitors</subject><subject>Poly(ADP-ribose) Polymerases - physiology</subject><subject>Reperfusion Injury - drug therapy</subject><subject>Reperfusion Injury - enzymology</subject><subject>Signal Transduction</subject><subject>Zinc Fingers</subject><issn>1537-1891</issn><issn>1879-3649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtLxDAUhYMovn-AG-nOmUXH3KZNGgRh8A2Cg4916CR3MGNfJu3A_HtTRl24cHXzOOfA_Q4hJ0AnQIGfLyer9n2S0HCnfEIp2yL7kAsZM57K7XDOmIghl7BHDrxfUgp5zuUu2UsoZ4xLuU_uZk25Hk2vZ7Gz88bjOGrDQ4Wu8BhDNJpNn2cxjKOiNpHtfNS9h68W-87qyFZtaXXR2ab2R2RnUZQej7_nIXm7vXm9uo8fn-4erqaPsU4F6-IEUikKFAwXmKdzXRidcZGZDJmUKQWZyRSpkQlHniUYZsqMlvkinxsOUrBDcrbJbV3z2aPvVGW9xrIsamx6r0Q2pKQ5BCVslNo13jtcqNbZqnBrBVQN-NRSBXxqwKcoVwFf8Jx-p_fzCs2v44dXEFxsBBh2XFl0ymuLtUZjHepOmcb-G3_5x61LWweE5Qeu0S-b3tUBngLlE0XVy9DfUB_QUB0VCfsCXIOSnw</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Sodhi, Rupinder K</creator><creator>Singh, Nirmal</creator><creator>Jaggi, Amteshwar S</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100901</creationdate><title>Poly(ADP-ribose) polymerase-1 (PARP-1) and its therapeutic implications</title><author>Sodhi, Rupinder K ; Singh, Nirmal ; Jaggi, Amteshwar S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-21497ae73efe84bcadc5675d5e3994019594e0d926e652e92643dc98f8bd61973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aging - metabolism</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Cardiovascular</topic><topic>Diabetes Mellitus - drug therapy</topic><topic>Diabetes Mellitus - enzymology</topic><topic>DNA Repair</topic><topic>HIV Infections - drug therapy</topic><topic>HIV Infections - enzymology</topic><topic>Humans</topic><topic>Inflammation - enzymology</topic><topic>Molecular Targeted Therapy</topic><topic>Necrosis</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - enzymology</topic><topic>PARP inhibitors</topic><topic>PARP-1</topic><topic>Poly(ADP-ribose) Polymerase Inhibitors</topic><topic>Poly(ADP-ribose) Polymerases - physiology</topic><topic>Reperfusion Injury - drug therapy</topic><topic>Reperfusion Injury - enzymology</topic><topic>Signal Transduction</topic><topic>Zinc Fingers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sodhi, Rupinder K</creatorcontrib><creatorcontrib>Singh, Nirmal</creatorcontrib><creatorcontrib>Jaggi, Amteshwar S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Vascular pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sodhi, Rupinder K</au><au>Singh, Nirmal</au><au>Jaggi, Amteshwar S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly(ADP-ribose) polymerase-1 (PARP-1) and its therapeutic implications</atitle><jtitle>Vascular pharmacology</jtitle><addtitle>Vascul Pharmacol</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>53</volume><issue>3</issue><spage>77</spage><epage>87</epage><pages>77-87</pages><issn>1537-1891</issn><eissn>1879-3649</eissn><abstract>Abstract Poly(ADP-ribose) polymerases (PARPs) are a family of cell signaling enzymes present in eukaryotes, which are involved in the poly(ADP-ribosylation) of DNA binding proteins. While an 18 member superfamily of PARPs has been identified, however PARP-1 the most abundant isoform accounts for more than 90% of its functions. PARP-1 works as DNA damage nick sensor, which uses NAD+ to form polymers of ADP-ribose (PAR) and nicotinamide. Three consequences of the activation of PARP-1 are particularly important for drug development: first, its role in DNA repair; second, its capacity to deplete cellular energetic pools, which culminates in cell dysfunction and necrosis; and third, its capacity to promote the transcription of proinflammatory genes. Consequently, pharmacological inhibition of PARP has the potential to enhance the cytotoxicity of certain DNA-damaging anticancer drugs, reduce cell necrosis (for example, in stroke or myocardial infarction) and downregulate multiple simultaneous pathways of inflammation and tissue injury (for example, in circulatory shock, colitis or diabetic complications). Through this article we have tried to develop a brief and simplified picture of the principal physiological and pathophysiological roles governed by PARP-1 and its therapeutic implications.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20633699</pmid><doi>10.1016/j.vph.2010.06.003</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1537-1891 |
ispartof | Vascular pharmacology, 2010-09, Vol.53 (3), p.77-87 |
issn | 1537-1891 1879-3649 |
language | eng |
recordid | cdi_proquest_miscellaneous_754019481 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Aging - metabolism Animals Apoptosis Cardiovascular Diabetes Mellitus - drug therapy Diabetes Mellitus - enzymology DNA Repair HIV Infections - drug therapy HIV Infections - enzymology Humans Inflammation - enzymology Molecular Targeted Therapy Necrosis Neoplasms - drug therapy Neoplasms - enzymology PARP inhibitors PARP-1 Poly(ADP-ribose) Polymerase Inhibitors Poly(ADP-ribose) Polymerases - physiology Reperfusion Injury - drug therapy Reperfusion Injury - enzymology Signal Transduction Zinc Fingers |
title | Poly(ADP-ribose) polymerase-1 (PARP-1) and its therapeutic implications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T04%3A41%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(ADP-ribose)%20polymerase-1%20(PARP-1)%20and%20its%20therapeutic%20implications&rft.jtitle=Vascular%20pharmacology&rft.au=Sodhi,%20Rupinder%20K&rft.date=2010-09-01&rft.volume=53&rft.issue=3&rft.spage=77&rft.epage=87&rft.pages=77-87&rft.issn=1537-1891&rft.eissn=1879-3649&rft_id=info:doi/10.1016/j.vph.2010.06.003&rft_dat=%3Cproquest_cross%3E754019481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=754019481&rft_id=info:pmid/20633699&rft_els_id=S1537189110001072&rfr_iscdi=true |