Different models of the active cochlea, and how to implement them in the state-space formalism

The state-space formalism [ Elliott S. J. , ( 2007 ). J. Acoust. Soc. Am. 122 , 2759-2771 ] allows one to discretize cochlear models in a straightforward matrix form and to modify the main physical properties of the cochlear model by changing the position and functional form of a few matrix elements...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2010-09, Vol.128 (3), p.1191-1202
Hauptverfasser: Sisto, Renata, Moleti, Arturo, Paternoster, Nicolo, Botti, Teresa, Bertaccini, Daniele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1202
container_issue 3
container_start_page 1191
container_title The Journal of the Acoustical Society of America
container_volume 128
creator Sisto, Renata
Moleti, Arturo
Paternoster, Nicolo
Botti, Teresa
Bertaccini, Daniele
description The state-space formalism [ Elliott S. J. , ( 2007 ). J. Acoust. Soc. Am. 122 , 2759-2771 ] allows one to discretize cochlear models in a straightforward matrix form and to modify the main physical properties of the cochlear model by changing the position and functional form of a few matrix elements. Feed-forward and feed-backward properties can be obtained by simply introducing off-diagonal terms in the matrixes expressing the coupling between the dynamical variables and the additional active pressure on the basilar membrane. Some theoretical issues related to different cochlear modeling choices, their implementation in a state-space scheme, and their physical consequences on the cochlear phenomenology, as predicted by numerical simulations, are discussed. Different schematizations of the active term describing the behavior of the outer hair cell's feedback mechanism, including nonlinear and nonlocal dependences on either pressure or basilar membrane displacement, are also discussed, showing their effect on some measurable cochlear properties.
doi_str_mv 10.1121/1.3466846
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753995373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753995373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-fd120fe762b288b1494ec22871c7ae6e422e5ec4db96c1c63541c1cbbb0bcc763</originalsourceid><addsrcrecordid>eNp10U1P3DAQBmCrApVl4dA_gHxBVaVm8XeSAwe0pQUJiQu9YjmTsdYojrdxtoh_39Bs6YnTaKRnZqR3CPnE2YpzwS_4SipjKmU-kAXXghWVFuqALBhjvFC1MUfkOOenqdWVrD-SI8EqrpXWC_L4LXiPA_YjjanFLtPk6bhB6mAMv5FCgk2H7it1fUs36ZmOiYa47TC-jkww0tD_HcijG7HIWwdIfRqi60KOJ-TQuy7j6b4uyc_v1w_rm-Lu_sft-uquACXVWPiWC-axNKIRVdVwVSsEIaqSQ-nQoBICNYJqm9oAByO14lNtmoY1AKWRS_J53rsd0q8d5tHGkAG7zvWYdtmWWta1lqWc5JdZwpByHtDb7RCiG14sZ_Y1TcvtPs3Jnu237pqI7Zv8F98EzvfAZXCdH1wPIf93UiileDW5y9llCFNMIfXvX317iJ0fYpOXfwAj5pD-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753995373</pqid></control><display><type>article</type><title>Different models of the active cochlea, and how to implement them in the state-space formalism</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Sisto, Renata ; Moleti, Arturo ; Paternoster, Nicolo ; Botti, Teresa ; Bertaccini, Daniele</creator><creatorcontrib>Sisto, Renata ; Moleti, Arturo ; Paternoster, Nicolo ; Botti, Teresa ; Bertaccini, Daniele</creatorcontrib><description>The state-space formalism [ Elliott S. J. , ( 2007 ). J. Acoust. Soc. Am. 122 , 2759-2771 ] allows one to discretize cochlear models in a straightforward matrix form and to modify the main physical properties of the cochlear model by changing the position and functional form of a few matrix elements. Feed-forward and feed-backward properties can be obtained by simply introducing off-diagonal terms in the matrixes expressing the coupling between the dynamical variables and the additional active pressure on the basilar membrane. Some theoretical issues related to different cochlear modeling choices, their implementation in a state-space scheme, and their physical consequences on the cochlear phenomenology, as predicted by numerical simulations, are discussed. Different schematizations of the active term describing the behavior of the outer hair cell's feedback mechanism, including nonlinear and nonlocal dependences on either pressure or basilar membrane displacement, are also discussed, showing their effect on some measurable cochlear properties.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.3466846</identifier><identifier>PMID: 20815455</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>Melville, NY: Acoustical Society of America</publisher><subject>Acoustic Stimulation ; Animals ; Basilar Membrane - physiology ; Biological and medical sciences ; Cochlea - physiology ; Computer Simulation ; Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation ; Feedback, Physiological ; Fundamental and applied biological sciences. Psychology ; Hearing ; Humans ; Linear Models ; Mechanotransduction, Cellular ; Models, Biological ; Nonlinear Dynamics ; Pressure ; Reaction Time ; Time Factors ; Vertebrates: nervous system and sense organs ; Vibration</subject><ispartof>The Journal of the Acoustical Society of America, 2010-09, Vol.128 (3), p.1191-1202</ispartof><rights>2010 Acoustical Society of America</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-fd120fe762b288b1494ec22871c7ae6e422e5ec4db96c1c63541c1cbbb0bcc763</citedby><cites>FETCH-LOGICAL-c434t-fd120fe762b288b1494ec22871c7ae6e422e5ec4db96c1c63541c1cbbb0bcc763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.3466846$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1565,4512,27924,27925,76256</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23244418$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20815455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sisto, Renata</creatorcontrib><creatorcontrib>Moleti, Arturo</creatorcontrib><creatorcontrib>Paternoster, Nicolo</creatorcontrib><creatorcontrib>Botti, Teresa</creatorcontrib><creatorcontrib>Bertaccini, Daniele</creatorcontrib><title>Different models of the active cochlea, and how to implement them in the state-space formalism</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>The state-space formalism [ Elliott S. J. , ( 2007 ). J. Acoust. Soc. Am. 122 , 2759-2771 ] allows one to discretize cochlear models in a straightforward matrix form and to modify the main physical properties of the cochlear model by changing the position and functional form of a few matrix elements. Feed-forward and feed-backward properties can be obtained by simply introducing off-diagonal terms in the matrixes expressing the coupling between the dynamical variables and the additional active pressure on the basilar membrane. Some theoretical issues related to different cochlear modeling choices, their implementation in a state-space scheme, and their physical consequences on the cochlear phenomenology, as predicted by numerical simulations, are discussed. Different schematizations of the active term describing the behavior of the outer hair cell's feedback mechanism, including nonlinear and nonlocal dependences on either pressure or basilar membrane displacement, are also discussed, showing their effect on some measurable cochlear properties.</description><subject>Acoustic Stimulation</subject><subject>Animals</subject><subject>Basilar Membrane - physiology</subject><subject>Biological and medical sciences</subject><subject>Cochlea - physiology</subject><subject>Computer Simulation</subject><subject>Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation</subject><subject>Feedback, Physiological</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hearing</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Mechanotransduction, Cellular</subject><subject>Models, Biological</subject><subject>Nonlinear Dynamics</subject><subject>Pressure</subject><subject>Reaction Time</subject><subject>Time Factors</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Vibration</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10U1P3DAQBmCrApVl4dA_gHxBVaVm8XeSAwe0pQUJiQu9YjmTsdYojrdxtoh_39Bs6YnTaKRnZqR3CPnE2YpzwS_4SipjKmU-kAXXghWVFuqALBhjvFC1MUfkOOenqdWVrD-SI8EqrpXWC_L4LXiPA_YjjanFLtPk6bhB6mAMv5FCgk2H7it1fUs36ZmOiYa47TC-jkww0tD_HcijG7HIWwdIfRqi60KOJ-TQuy7j6b4uyc_v1w_rm-Lu_sft-uquACXVWPiWC-axNKIRVdVwVSsEIaqSQ-nQoBICNYJqm9oAByO14lNtmoY1AKWRS_J53rsd0q8d5tHGkAG7zvWYdtmWWta1lqWc5JdZwpByHtDb7RCiG14sZ_Y1TcvtPs3Jnu237pqI7Zv8F98EzvfAZXCdH1wPIf93UiileDW5y9llCFNMIfXvX317iJ0fYpOXfwAj5pD-</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Sisto, Renata</creator><creator>Moleti, Arturo</creator><creator>Paternoster, Nicolo</creator><creator>Botti, Teresa</creator><creator>Bertaccini, Daniele</creator><general>Acoustical Society of America</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100901</creationdate><title>Different models of the active cochlea, and how to implement them in the state-space formalism</title><author>Sisto, Renata ; Moleti, Arturo ; Paternoster, Nicolo ; Botti, Teresa ; Bertaccini, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-fd120fe762b288b1494ec22871c7ae6e422e5ec4db96c1c63541c1cbbb0bcc763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acoustic Stimulation</topic><topic>Animals</topic><topic>Basilar Membrane - physiology</topic><topic>Biological and medical sciences</topic><topic>Cochlea - physiology</topic><topic>Computer Simulation</topic><topic>Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation</topic><topic>Feedback, Physiological</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hearing</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Mechanotransduction, Cellular</topic><topic>Models, Biological</topic><topic>Nonlinear Dynamics</topic><topic>Pressure</topic><topic>Reaction Time</topic><topic>Time Factors</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sisto, Renata</creatorcontrib><creatorcontrib>Moleti, Arturo</creatorcontrib><creatorcontrib>Paternoster, Nicolo</creatorcontrib><creatorcontrib>Botti, Teresa</creatorcontrib><creatorcontrib>Bertaccini, Daniele</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sisto, Renata</au><au>Moleti, Arturo</au><au>Paternoster, Nicolo</au><au>Botti, Teresa</au><au>Bertaccini, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Different models of the active cochlea, and how to implement them in the state-space formalism</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>128</volume><issue>3</issue><spage>1191</spage><epage>1202</epage><pages>1191-1202</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>The state-space formalism [ Elliott S. J. , ( 2007 ). J. Acoust. Soc. Am. 122 , 2759-2771 ] allows one to discretize cochlear models in a straightforward matrix form and to modify the main physical properties of the cochlear model by changing the position and functional form of a few matrix elements. Feed-forward and feed-backward properties can be obtained by simply introducing off-diagonal terms in the matrixes expressing the coupling between the dynamical variables and the additional active pressure on the basilar membrane. Some theoretical issues related to different cochlear modeling choices, their implementation in a state-space scheme, and their physical consequences on the cochlear phenomenology, as predicted by numerical simulations, are discussed. Different schematizations of the active term describing the behavior of the outer hair cell's feedback mechanism, including nonlinear and nonlocal dependences on either pressure or basilar membrane displacement, are also discussed, showing their effect on some measurable cochlear properties.</abstract><cop>Melville, NY</cop><pub>Acoustical Society of America</pub><pmid>20815455</pmid><doi>10.1121/1.3466846</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2010-09, Vol.128 (3), p.1191-1202
issn 0001-4966
1520-8524
language eng
recordid cdi_proquest_miscellaneous_753995373
source MEDLINE; AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America
subjects Acoustic Stimulation
Animals
Basilar Membrane - physiology
Biological and medical sciences
Cochlea - physiology
Computer Simulation
Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation
Feedback, Physiological
Fundamental and applied biological sciences. Psychology
Hearing
Humans
Linear Models
Mechanotransduction, Cellular
Models, Biological
Nonlinear Dynamics
Pressure
Reaction Time
Time Factors
Vertebrates: nervous system and sense organs
Vibration
title Different models of the active cochlea, and how to implement them in the state-space formalism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A31%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Different%20models%20of%20the%20active%20cochlea,%20and%20how%20to%20implement%20them%20in%20the%20state-space%20formalism&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Sisto,%20Renata&rft.date=2010-09-01&rft.volume=128&rft.issue=3&rft.spage=1191&rft.epage=1202&rft.pages=1191-1202&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.3466846&rft_dat=%3Cproquest_cross%3E753995373%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753995373&rft_id=info:pmid/20815455&rfr_iscdi=true