Different models of the active cochlea, and how to implement them in the state-space formalism
The state-space formalism [ Elliott S. J. , ( 2007 ). J. Acoust. Soc. Am. 122 , 2759-2771 ] allows one to discretize cochlear models in a straightforward matrix form and to modify the main physical properties of the cochlear model by changing the position and functional form of a few matrix elements...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2010-09, Vol.128 (3), p.1191-1202 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1202 |
---|---|
container_issue | 3 |
container_start_page | 1191 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 128 |
creator | Sisto, Renata Moleti, Arturo Paternoster, Nicolo Botti, Teresa Bertaccini, Daniele |
description | The state-space formalism [
Elliott S. J.
,
(
2007
).
J. Acoust. Soc. Am.
122
,
2759-2771
] allows one to discretize cochlear models in a straightforward matrix form and to modify the main physical properties of the cochlear model by changing the position and functional form of a few matrix elements. Feed-forward and feed-backward properties can be obtained by simply introducing off-diagonal terms in the matrixes expressing the coupling between the dynamical variables and the additional active pressure on the basilar membrane. Some theoretical issues related to different cochlear modeling choices, their implementation in a state-space scheme, and their physical consequences on the cochlear phenomenology, as predicted by numerical simulations, are discussed. Different schematizations of the active term describing the behavior of the outer hair cell's feedback mechanism, including nonlinear and nonlocal dependences on either pressure or basilar membrane displacement, are also discussed, showing their effect on some measurable cochlear properties. |
doi_str_mv | 10.1121/1.3466846 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753995373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753995373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-fd120fe762b288b1494ec22871c7ae6e422e5ec4db96c1c63541c1cbbb0bcc763</originalsourceid><addsrcrecordid>eNp10U1P3DAQBmCrApVl4dA_gHxBVaVm8XeSAwe0pQUJiQu9YjmTsdYojrdxtoh_39Bs6YnTaKRnZqR3CPnE2YpzwS_4SipjKmU-kAXXghWVFuqALBhjvFC1MUfkOOenqdWVrD-SI8EqrpXWC_L4LXiPA_YjjanFLtPk6bhB6mAMv5FCgk2H7it1fUs36ZmOiYa47TC-jkww0tD_HcijG7HIWwdIfRqi60KOJ-TQuy7j6b4uyc_v1w_rm-Lu_sft-uquACXVWPiWC-axNKIRVdVwVSsEIaqSQ-nQoBICNYJqm9oAByO14lNtmoY1AKWRS_J53rsd0q8d5tHGkAG7zvWYdtmWWta1lqWc5JdZwpByHtDb7RCiG14sZ_Y1TcvtPs3Jnu237pqI7Zv8F98EzvfAZXCdH1wPIf93UiileDW5y9llCFNMIfXvX317iJ0fYpOXfwAj5pD-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753995373</pqid></control><display><type>article</type><title>Different models of the active cochlea, and how to implement them in the state-space formalism</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Sisto, Renata ; Moleti, Arturo ; Paternoster, Nicolo ; Botti, Teresa ; Bertaccini, Daniele</creator><creatorcontrib>Sisto, Renata ; Moleti, Arturo ; Paternoster, Nicolo ; Botti, Teresa ; Bertaccini, Daniele</creatorcontrib><description>The state-space formalism [
Elliott S. J.
,
(
2007
).
J. Acoust. Soc. Am.
122
,
2759-2771
] allows one to discretize cochlear models in a straightforward matrix form and to modify the main physical properties of the cochlear model by changing the position and functional form of a few matrix elements. Feed-forward and feed-backward properties can be obtained by simply introducing off-diagonal terms in the matrixes expressing the coupling between the dynamical variables and the additional active pressure on the basilar membrane. Some theoretical issues related to different cochlear modeling choices, their implementation in a state-space scheme, and their physical consequences on the cochlear phenomenology, as predicted by numerical simulations, are discussed. Different schematizations of the active term describing the behavior of the outer hair cell's feedback mechanism, including nonlinear and nonlocal dependences on either pressure or basilar membrane displacement, are also discussed, showing their effect on some measurable cochlear properties.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.3466846</identifier><identifier>PMID: 20815455</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>Melville, NY: Acoustical Society of America</publisher><subject>Acoustic Stimulation ; Animals ; Basilar Membrane - physiology ; Biological and medical sciences ; Cochlea - physiology ; Computer Simulation ; Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation ; Feedback, Physiological ; Fundamental and applied biological sciences. Psychology ; Hearing ; Humans ; Linear Models ; Mechanotransduction, Cellular ; Models, Biological ; Nonlinear Dynamics ; Pressure ; Reaction Time ; Time Factors ; Vertebrates: nervous system and sense organs ; Vibration</subject><ispartof>The Journal of the Acoustical Society of America, 2010-09, Vol.128 (3), p.1191-1202</ispartof><rights>2010 Acoustical Society of America</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-fd120fe762b288b1494ec22871c7ae6e422e5ec4db96c1c63541c1cbbb0bcc763</citedby><cites>FETCH-LOGICAL-c434t-fd120fe762b288b1494ec22871c7ae6e422e5ec4db96c1c63541c1cbbb0bcc763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.3466846$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1565,4512,27924,27925,76256</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23244418$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20815455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sisto, Renata</creatorcontrib><creatorcontrib>Moleti, Arturo</creatorcontrib><creatorcontrib>Paternoster, Nicolo</creatorcontrib><creatorcontrib>Botti, Teresa</creatorcontrib><creatorcontrib>Bertaccini, Daniele</creatorcontrib><title>Different models of the active cochlea, and how to implement them in the state-space formalism</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>The state-space formalism [
Elliott S. J.
,
(
2007
).
J. Acoust. Soc. Am.
122
,
2759-2771
] allows one to discretize cochlear models in a straightforward matrix form and to modify the main physical properties of the cochlear model by changing the position and functional form of a few matrix elements. Feed-forward and feed-backward properties can be obtained by simply introducing off-diagonal terms in the matrixes expressing the coupling between the dynamical variables and the additional active pressure on the basilar membrane. Some theoretical issues related to different cochlear modeling choices, their implementation in a state-space scheme, and their physical consequences on the cochlear phenomenology, as predicted by numerical simulations, are discussed. Different schematizations of the active term describing the behavior of the outer hair cell's feedback mechanism, including nonlinear and nonlocal dependences on either pressure or basilar membrane displacement, are also discussed, showing their effect on some measurable cochlear properties.</description><subject>Acoustic Stimulation</subject><subject>Animals</subject><subject>Basilar Membrane - physiology</subject><subject>Biological and medical sciences</subject><subject>Cochlea - physiology</subject><subject>Computer Simulation</subject><subject>Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation</subject><subject>Feedback, Physiological</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hearing</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Mechanotransduction, Cellular</subject><subject>Models, Biological</subject><subject>Nonlinear Dynamics</subject><subject>Pressure</subject><subject>Reaction Time</subject><subject>Time Factors</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Vibration</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10U1P3DAQBmCrApVl4dA_gHxBVaVm8XeSAwe0pQUJiQu9YjmTsdYojrdxtoh_39Bs6YnTaKRnZqR3CPnE2YpzwS_4SipjKmU-kAXXghWVFuqALBhjvFC1MUfkOOenqdWVrD-SI8EqrpXWC_L4LXiPA_YjjanFLtPk6bhB6mAMv5FCgk2H7it1fUs36ZmOiYa47TC-jkww0tD_HcijG7HIWwdIfRqi60KOJ-TQuy7j6b4uyc_v1w_rm-Lu_sft-uquACXVWPiWC-axNKIRVdVwVSsEIaqSQ-nQoBICNYJqm9oAByO14lNtmoY1AKWRS_J53rsd0q8d5tHGkAG7zvWYdtmWWta1lqWc5JdZwpByHtDb7RCiG14sZ_Y1TcvtPs3Jnu237pqI7Zv8F98EzvfAZXCdH1wPIf93UiileDW5y9llCFNMIfXvX317iJ0fYpOXfwAj5pD-</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Sisto, Renata</creator><creator>Moleti, Arturo</creator><creator>Paternoster, Nicolo</creator><creator>Botti, Teresa</creator><creator>Bertaccini, Daniele</creator><general>Acoustical Society of America</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100901</creationdate><title>Different models of the active cochlea, and how to implement them in the state-space formalism</title><author>Sisto, Renata ; Moleti, Arturo ; Paternoster, Nicolo ; Botti, Teresa ; Bertaccini, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-fd120fe762b288b1494ec22871c7ae6e422e5ec4db96c1c63541c1cbbb0bcc763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acoustic Stimulation</topic><topic>Animals</topic><topic>Basilar Membrane - physiology</topic><topic>Biological and medical sciences</topic><topic>Cochlea - physiology</topic><topic>Computer Simulation</topic><topic>Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation</topic><topic>Feedback, Physiological</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hearing</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Mechanotransduction, Cellular</topic><topic>Models, Biological</topic><topic>Nonlinear Dynamics</topic><topic>Pressure</topic><topic>Reaction Time</topic><topic>Time Factors</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sisto, Renata</creatorcontrib><creatorcontrib>Moleti, Arturo</creatorcontrib><creatorcontrib>Paternoster, Nicolo</creatorcontrib><creatorcontrib>Botti, Teresa</creatorcontrib><creatorcontrib>Bertaccini, Daniele</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sisto, Renata</au><au>Moleti, Arturo</au><au>Paternoster, Nicolo</au><au>Botti, Teresa</au><au>Bertaccini, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Different models of the active cochlea, and how to implement them in the state-space formalism</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>128</volume><issue>3</issue><spage>1191</spage><epage>1202</epage><pages>1191-1202</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>The state-space formalism [
Elliott S. J.
,
(
2007
).
J. Acoust. Soc. Am.
122
,
2759-2771
] allows one to discretize cochlear models in a straightforward matrix form and to modify the main physical properties of the cochlear model by changing the position and functional form of a few matrix elements. Feed-forward and feed-backward properties can be obtained by simply introducing off-diagonal terms in the matrixes expressing the coupling between the dynamical variables and the additional active pressure on the basilar membrane. Some theoretical issues related to different cochlear modeling choices, their implementation in a state-space scheme, and their physical consequences on the cochlear phenomenology, as predicted by numerical simulations, are discussed. Different schematizations of the active term describing the behavior of the outer hair cell's feedback mechanism, including nonlinear and nonlocal dependences on either pressure or basilar membrane displacement, are also discussed, showing their effect on some measurable cochlear properties.</abstract><cop>Melville, NY</cop><pub>Acoustical Society of America</pub><pmid>20815455</pmid><doi>10.1121/1.3466846</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2010-09, Vol.128 (3), p.1191-1202 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_proquest_miscellaneous_753995373 |
source | MEDLINE; AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America |
subjects | Acoustic Stimulation Animals Basilar Membrane - physiology Biological and medical sciences Cochlea - physiology Computer Simulation Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation Feedback, Physiological Fundamental and applied biological sciences. Psychology Hearing Humans Linear Models Mechanotransduction, Cellular Models, Biological Nonlinear Dynamics Pressure Reaction Time Time Factors Vertebrates: nervous system and sense organs Vibration |
title | Different models of the active cochlea, and how to implement them in the state-space formalism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A31%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Different%20models%20of%20the%20active%20cochlea,%20and%20how%20to%20implement%20them%20in%20the%20state-space%20formalism&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Sisto,%20Renata&rft.date=2010-09-01&rft.volume=128&rft.issue=3&rft.spage=1191&rft.epage=1202&rft.pages=1191-1202&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.3466846&rft_dat=%3Cproquest_cross%3E753995373%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753995373&rft_id=info:pmid/20815455&rfr_iscdi=true |