A new method for finding hierarchical subgroups from networks

We present a new method for decomposing a social network into an optimal number of hierarchical subgroups. With a perfect hierarchical subgroup defined as one in which every member is automorphically equivalent to each other, the method uses the REGGE algorithm to measure the similarities among node...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Social networks 2010-07, Vol.32 (3), p.234-244
Hauptverfasser: Hsieh, Mo-Han, Magee, Christopher L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 244
container_issue 3
container_start_page 234
container_title Social networks
container_volume 32
creator Hsieh, Mo-Han
Magee, Christopher L.
description We present a new method for decomposing a social network into an optimal number of hierarchical subgroups. With a perfect hierarchical subgroup defined as one in which every member is automorphically equivalent to each other, the method uses the REGGE algorithm to measure the similarities among nodes and applies the k-means method to group the nodes that have congruent profiles of dissimilarities with other nodes into various numbers of hierarchical subgroups. The best number of subgroups is determined by minimizing the intra-cluster variance of dissimilarity subject to the constraint that the improvement in going to more subgroups is better than a network whose n nodes are maximally dispersed in the n-dimensional space would achieve. We also describe a decomposability metric that assesses the deviation of a real network from the ideal one that contains only perfect hierarchical subgroups. Four well known network data sets are used to demonstrate the method and metric. These demonstrations indicate the utility of our approach and suggest how it can be used in a complementary way to Generalized Blockmodeling for hierarchical decomposition.
doi_str_mv 10.1016/j.socnet.2010.03.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753833192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378873310000171</els_id><sourcerecordid>753833192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-7890d1f0d1c2fd9b46584169e696da87497af413dd10368f9eabb02d61073e513</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWC9v4GI24mrqOZOZXBYKIt6g4EbXIc2lTW0nNZkqvr2RFpe6OBw4fP_54SPkDGGMgOxyMc7R9G4YN1BOQMcA3R4ZoeCybhBxn4yAclELTukhOcp5AQCMoxiRq5uqd5_Vyg3zaCsfU-VDb0M_q-bBJZ3MPBi9rPJmOktxs86VT3FVIsNnTG_5hBx4vczudLePyev93cvtYz15fni6vZnUpgUYai4kWPRlTOOtnLasEy0y6ZhkVgveSq59i9RaBMqEl05Pp9BYhsCp65Aek4vt33WK7xuXB7UK2bjlUvcubrLiHRWUomz-J1sKDDshC9luSZNizsl5tU5hpdOXQlA_WtVCbbWqH60KqCpaS-x8V6BzMeOT7k3Iv9mmkdgV2YW73nKuePkoLlU2wfXG2ZCcGZSN4e-iby_YjmY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743061589</pqid></control><display><type>article</type><title>A new method for finding hierarchical subgroups from networks</title><source>Elsevier ScienceDirect Journals Complete</source><source>Sociological Abstracts</source><creator>Hsieh, Mo-Han ; Magee, Christopher L.</creator><creatorcontrib>Hsieh, Mo-Han ; Magee, Christopher L.</creatorcontrib><description>We present a new method for decomposing a social network into an optimal number of hierarchical subgroups. With a perfect hierarchical subgroup defined as one in which every member is automorphically equivalent to each other, the method uses the REGGE algorithm to measure the similarities among nodes and applies the k-means method to group the nodes that have congruent profiles of dissimilarities with other nodes into various numbers of hierarchical subgroups. The best number of subgroups is determined by minimizing the intra-cluster variance of dissimilarity subject to the constraint that the improvement in going to more subgroups is better than a network whose n nodes are maximally dispersed in the n-dimensional space would achieve. We also describe a decomposability metric that assesses the deviation of a real network from the ideal one that contains only perfect hierarchical subgroups. Four well known network data sets are used to demonstrate the method and metric. These demonstrations indicate the utility of our approach and suggest how it can be used in a complementary way to Generalized Blockmodeling for hierarchical decomposition.</description><identifier>ISSN: 0378-8733</identifier><identifier>EISSN: 1879-2111</identifier><identifier>DOI: 10.1016/j.socnet.2010.03.005</identifier><identifier>CODEN: SONED4</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Automorphic equivalence ; Decomposability ; Generalized Blockmodeling ; Group analysis ; Hierarchical subgroups ; Hierarchy ; History, theory and methodology ; k-Means method ; Methodology ; Multidimensional analysis ; Network analysis ; Positional analysis ; Research methods ; Social integration. Social relations. Social participation ; Social Networks ; Social organization. Social system. Social structure ; Sociology</subject><ispartof>Social networks, 2010-07, Vol.32 (3), p.234-244</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-7890d1f0d1c2fd9b46584169e696da87497af413dd10368f9eabb02d61073e513</citedby><cites>FETCH-LOGICAL-c400t-7890d1f0d1c2fd9b46584169e696da87497af413dd10368f9eabb02d61073e513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.socnet.2010.03.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,33754,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22915037$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsieh, Mo-Han</creatorcontrib><creatorcontrib>Magee, Christopher L.</creatorcontrib><title>A new method for finding hierarchical subgroups from networks</title><title>Social networks</title><description>We present a new method for decomposing a social network into an optimal number of hierarchical subgroups. With a perfect hierarchical subgroup defined as one in which every member is automorphically equivalent to each other, the method uses the REGGE algorithm to measure the similarities among nodes and applies the k-means method to group the nodes that have congruent profiles of dissimilarities with other nodes into various numbers of hierarchical subgroups. The best number of subgroups is determined by minimizing the intra-cluster variance of dissimilarity subject to the constraint that the improvement in going to more subgroups is better than a network whose n nodes are maximally dispersed in the n-dimensional space would achieve. We also describe a decomposability metric that assesses the deviation of a real network from the ideal one that contains only perfect hierarchical subgroups. Four well known network data sets are used to demonstrate the method and metric. These demonstrations indicate the utility of our approach and suggest how it can be used in a complementary way to Generalized Blockmodeling for hierarchical decomposition.</description><subject>Algorithms</subject><subject>Automorphic equivalence</subject><subject>Decomposability</subject><subject>Generalized Blockmodeling</subject><subject>Group analysis</subject><subject>Hierarchical subgroups</subject><subject>Hierarchy</subject><subject>History, theory and methodology</subject><subject>k-Means method</subject><subject>Methodology</subject><subject>Multidimensional analysis</subject><subject>Network analysis</subject><subject>Positional analysis</subject><subject>Research methods</subject><subject>Social integration. Social relations. Social participation</subject><subject>Social Networks</subject><subject>Social organization. Social system. Social structure</subject><subject>Sociology</subject><issn>0378-8733</issn><issn>1879-2111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BHHNA</sourceid><recordid>eNqFkMtKAzEUhoMoWC9v4GI24mrqOZOZXBYKIt6g4EbXIc2lTW0nNZkqvr2RFpe6OBw4fP_54SPkDGGMgOxyMc7R9G4YN1BOQMcA3R4ZoeCybhBxn4yAclELTukhOcp5AQCMoxiRq5uqd5_Vyg3zaCsfU-VDb0M_q-bBJZ3MPBi9rPJmOktxs86VT3FVIsNnTG_5hBx4vczudLePyev93cvtYz15fni6vZnUpgUYai4kWPRlTOOtnLasEy0y6ZhkVgveSq59i9RaBMqEl05Pp9BYhsCp65Aek4vt33WK7xuXB7UK2bjlUvcubrLiHRWUomz-J1sKDDshC9luSZNizsl5tU5hpdOXQlA_WtVCbbWqH60KqCpaS-x8V6BzMeOT7k3Iv9mmkdgV2YW73nKuePkoLlU2wfXG2ZCcGZSN4e-iby_YjmY</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Hsieh, Mo-Han</creator><creator>Magee, Christopher L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U4</scope><scope>BHHNA</scope><scope>DWI</scope><scope>WZK</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20100701</creationdate><title>A new method for finding hierarchical subgroups from networks</title><author>Hsieh, Mo-Han ; Magee, Christopher L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-7890d1f0d1c2fd9b46584169e696da87497af413dd10368f9eabb02d61073e513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Automorphic equivalence</topic><topic>Decomposability</topic><topic>Generalized Blockmodeling</topic><topic>Group analysis</topic><topic>Hierarchical subgroups</topic><topic>Hierarchy</topic><topic>History, theory and methodology</topic><topic>k-Means method</topic><topic>Methodology</topic><topic>Multidimensional analysis</topic><topic>Network analysis</topic><topic>Positional analysis</topic><topic>Research methods</topic><topic>Social integration. Social relations. Social participation</topic><topic>Social Networks</topic><topic>Social organization. Social system. Social structure</topic><topic>Sociology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, Mo-Han</creatorcontrib><creatorcontrib>Magee, Christopher L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts (Ovid)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Social networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsieh, Mo-Han</au><au>Magee, Christopher L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new method for finding hierarchical subgroups from networks</atitle><jtitle>Social networks</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>32</volume><issue>3</issue><spage>234</spage><epage>244</epage><pages>234-244</pages><issn>0378-8733</issn><eissn>1879-2111</eissn><coden>SONED4</coden><abstract>We present a new method for decomposing a social network into an optimal number of hierarchical subgroups. With a perfect hierarchical subgroup defined as one in which every member is automorphically equivalent to each other, the method uses the REGGE algorithm to measure the similarities among nodes and applies the k-means method to group the nodes that have congruent profiles of dissimilarities with other nodes into various numbers of hierarchical subgroups. The best number of subgroups is determined by minimizing the intra-cluster variance of dissimilarity subject to the constraint that the improvement in going to more subgroups is better than a network whose n nodes are maximally dispersed in the n-dimensional space would achieve. We also describe a decomposability metric that assesses the deviation of a real network from the ideal one that contains only perfect hierarchical subgroups. Four well known network data sets are used to demonstrate the method and metric. These demonstrations indicate the utility of our approach and suggest how it can be used in a complementary way to Generalized Blockmodeling for hierarchical decomposition.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.socnet.2010.03.005</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-8733
ispartof Social networks, 2010-07, Vol.32 (3), p.234-244
issn 0378-8733
1879-2111
language eng
recordid cdi_proquest_miscellaneous_753833192
source Elsevier ScienceDirect Journals Complete; Sociological Abstracts
subjects Algorithms
Automorphic equivalence
Decomposability
Generalized Blockmodeling
Group analysis
Hierarchical subgroups
Hierarchy
History, theory and methodology
k-Means method
Methodology
Multidimensional analysis
Network analysis
Positional analysis
Research methods
Social integration. Social relations. Social participation
Social Networks
Social organization. Social system. Social structure
Sociology
title A new method for finding hierarchical subgroups from networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A50%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20method%20for%20finding%20hierarchical%20subgroups%20from%20networks&rft.jtitle=Social%20networks&rft.au=Hsieh,%20Mo-Han&rft.date=2010-07-01&rft.volume=32&rft.issue=3&rft.spage=234&rft.epage=244&rft.pages=234-244&rft.issn=0378-8733&rft.eissn=1879-2111&rft.coden=SONED4&rft_id=info:doi/10.1016/j.socnet.2010.03.005&rft_dat=%3Cproquest_cross%3E753833192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743061589&rft_id=info:pmid/&rft_els_id=S0378873310000171&rfr_iscdi=true