Realising the future: forecasting with high-frequency-based volatility (HEAVY) models

This paper studies in some detail a class of high-frequency-based volatility (HEAVY) models. These models are direct models of daily asset return volatility based on realised measures constructed from high-frequency data. Our analysis identifies that the models have momentum and mean reversion effec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied econometrics (Chichester, England) England), 2010-03, Vol.25 (2), p.197-231
Hauptverfasser: Shephard, Neil, Sheppard, Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 231
container_issue 2
container_start_page 197
container_title Journal of applied econometrics (Chichester, England)
container_volume 25
creator Shephard, Neil
Sheppard, Kevin
description This paper studies in some detail a class of high-frequency-based volatility (HEAVY) models. These models are direct models of daily asset return volatility based on realised measures constructed from high-frequency data. Our analysis identifies that the models have momentum and mean reversion effects, and that they adjust quickly to structural breaks in the level of the volatility process. We study how to estimate the models and how they perform through the credit crunch, comparing their fit to more traditional GARCH models. We analyse a model-based bootstrap which allows us to estimate the entire predictive distribution of returns. We also provide an analysis of missing data in the context of these models. Copyright © 2010 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/jae.1158
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_753832935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40607017</jstor_id><sourcerecordid>40607017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4818-deb8f263a42057368263278a0e5e9fc09f3b85025038bc5bd951a28a310e4113</originalsourceid><addsrcrecordid>eNp10VtLwzAUB_AgCs4L-AWE4ovzoXqSLE3q29B5vyHz9hTS7tRldqsmqbpvb8dEQfApIefHn8M_hGxQ2KUAbG9kcJdSoRZIi0KaxpQJsUhaoBSPJRNsmax4PwKABEC2yN0tmtJ6O3mOwhCjog61w_2oqBzmxofZ-4cNw2hon4dx4fCtxkk-jTPjcRC9V6UJtrRhGrVPet37p51oXA2w9GtkqTClx_Xvc5X0j3r9g5P44vr49KB7EecdRVU8wEwVLOGmw0BInqjmzqQygALTIoe04JkSwARwleUiG6SCGqYMp4AdSvkq2Z7HvrqqWcwHPbY-x7I0E6xqr6XgirOUi0Zu_ZGjqnaTZjfNqJIJFXwW156j3FXeOyz0q7Nj46aagp6Vq5ty9azchsZz-mFLnP7r9Fm39-03537kQ-V-fKf5BQlU_uZZH_DzZ27ci04kl0I_XB3r5PH8Uj3c9PUh_wIu8ZGd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218761531</pqid></control><display><type>article</type><title>Realising the future: forecasting with high-frequency-based volatility (HEAVY) models</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Jstor Complete Legacy</source><creator>Shephard, Neil ; Sheppard, Kevin</creator><creatorcontrib>Shephard, Neil ; Sheppard, Kevin</creatorcontrib><description>This paper studies in some detail a class of high-frequency-based volatility (HEAVY) models. These models are direct models of daily asset return volatility based on realised measures constructed from high-frequency data. Our analysis identifies that the models have momentum and mean reversion effects, and that they adjust quickly to structural breaks in the level of the volatility process. We study how to estimate the models and how they perform through the credit crunch, comparing their fit to more traditional GARCH models. We analyse a model-based bootstrap which allows us to estimate the entire predictive distribution of returns. We also provide an analysis of missing data in the context of these models. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0883-7252</identifier><identifier>EISSN: 1099-1255</identifier><identifier>DOI: 10.1002/jae.1158</identifier><identifier>CODEN: JAECET</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Bootstrap method ; Econometric models ; Econometrics ; Economic models ; Estimators ; Forecasting models ; Forecasting standards ; Forecasting techniques ; GARCH models ; Libraries ; Modeling ; Parametric models ; Rates of return ; Statistical forecasts ; Statistical variance ; Stochastic models ; Stock returns ; Studies ; Time series ; Time series forecasting ; Volatility</subject><ispartof>Journal of applied econometrics (Chichester, England), 2010-03, Vol.25 (2), p.197-231</ispartof><rights>2010 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright Wiley Periodicals Inc. Mar 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4818-deb8f263a42057368263278a0e5e9fc09f3b85025038bc5bd951a28a310e4113</citedby><cites>FETCH-LOGICAL-c4818-deb8f263a42057368263278a0e5e9fc09f3b85025038bc5bd951a28a310e4113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40607017$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40607017$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27903,27904,45553,45554,57995,58228</link.rule.ids></links><search><creatorcontrib>Shephard, Neil</creatorcontrib><creatorcontrib>Sheppard, Kevin</creatorcontrib><title>Realising the future: forecasting with high-frequency-based volatility (HEAVY) models</title><title>Journal of applied econometrics (Chichester, England)</title><addtitle>J. Appl. Econ</addtitle><description>This paper studies in some detail a class of high-frequency-based volatility (HEAVY) models. These models are direct models of daily asset return volatility based on realised measures constructed from high-frequency data. Our analysis identifies that the models have momentum and mean reversion effects, and that they adjust quickly to structural breaks in the level of the volatility process. We study how to estimate the models and how they perform through the credit crunch, comparing their fit to more traditional GARCH models. We analyse a model-based bootstrap which allows us to estimate the entire predictive distribution of returns. We also provide an analysis of missing data in the context of these models. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><subject>Bootstrap method</subject><subject>Econometric models</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Estimators</subject><subject>Forecasting models</subject><subject>Forecasting standards</subject><subject>Forecasting techniques</subject><subject>GARCH models</subject><subject>Libraries</subject><subject>Modeling</subject><subject>Parametric models</subject><subject>Rates of return</subject><subject>Statistical forecasts</subject><subject>Statistical variance</subject><subject>Stochastic models</subject><subject>Stock returns</subject><subject>Studies</subject><subject>Time series</subject><subject>Time series forecasting</subject><subject>Volatility</subject><issn>0883-7252</issn><issn>1099-1255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp10VtLwzAUB_AgCs4L-AWE4ovzoXqSLE3q29B5vyHz9hTS7tRldqsmqbpvb8dEQfApIefHn8M_hGxQ2KUAbG9kcJdSoRZIi0KaxpQJsUhaoBSPJRNsmax4PwKABEC2yN0tmtJ6O3mOwhCjog61w_2oqBzmxofZ-4cNw2hon4dx4fCtxkk-jTPjcRC9V6UJtrRhGrVPet37p51oXA2w9GtkqTClx_Xvc5X0j3r9g5P44vr49KB7EecdRVU8wEwVLOGmw0BInqjmzqQygALTIoe04JkSwARwleUiG6SCGqYMp4AdSvkq2Z7HvrqqWcwHPbY-x7I0E6xqr6XgirOUi0Zu_ZGjqnaTZjfNqJIJFXwW156j3FXeOyz0q7Nj46aagp6Vq5ty9azchsZz-mFLnP7r9Fm39-03537kQ-V-fKf5BQlU_uZZH_DzZ27ci04kl0I_XB3r5PH8Uj3c9PUh_wIu8ZGd</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Shephard, Neil</creator><creator>Sheppard, Kevin</creator><general>John Wiley &amp; Sons, Ltd</general><general>John Wiley &amp; Sons</general><general>Wiley Periodicals Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>201003</creationdate><title>Realising the future: forecasting with high-frequency-based volatility (HEAVY) models</title><author>Shephard, Neil ; Sheppard, Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4818-deb8f263a42057368263278a0e5e9fc09f3b85025038bc5bd951a28a310e4113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bootstrap method</topic><topic>Econometric models</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Estimators</topic><topic>Forecasting models</topic><topic>Forecasting standards</topic><topic>Forecasting techniques</topic><topic>GARCH models</topic><topic>Libraries</topic><topic>Modeling</topic><topic>Parametric models</topic><topic>Rates of return</topic><topic>Statistical forecasts</topic><topic>Statistical variance</topic><topic>Stochastic models</topic><topic>Stock returns</topic><topic>Studies</topic><topic>Time series</topic><topic>Time series forecasting</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shephard, Neil</creatorcontrib><creatorcontrib>Sheppard, Kevin</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of applied econometrics (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shephard, Neil</au><au>Sheppard, Kevin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realising the future: forecasting with high-frequency-based volatility (HEAVY) models</atitle><jtitle>Journal of applied econometrics (Chichester, England)</jtitle><addtitle>J. Appl. Econ</addtitle><date>2010-03</date><risdate>2010</risdate><volume>25</volume><issue>2</issue><spage>197</spage><epage>231</epage><pages>197-231</pages><issn>0883-7252</issn><eissn>1099-1255</eissn><coden>JAECET</coden><abstract>This paper studies in some detail a class of high-frequency-based volatility (HEAVY) models. These models are direct models of daily asset return volatility based on realised measures constructed from high-frequency data. Our analysis identifies that the models have momentum and mean reversion effects, and that they adjust quickly to structural breaks in the level of the volatility process. We study how to estimate the models and how they perform through the credit crunch, comparing their fit to more traditional GARCH models. We analyse a model-based bootstrap which allows us to estimate the entire predictive distribution of returns. We also provide an analysis of missing data in the context of these models. Copyright © 2010 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/jae.1158</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-7252
ispartof Journal of applied econometrics (Chichester, England), 2010-03, Vol.25 (2), p.197-231
issn 0883-7252
1099-1255
language eng
recordid cdi_proquest_miscellaneous_753832935
source Wiley Online Library Journals Frontfile Complete; Jstor Complete Legacy
subjects Bootstrap method
Econometric models
Econometrics
Economic models
Estimators
Forecasting models
Forecasting standards
Forecasting techniques
GARCH models
Libraries
Modeling
Parametric models
Rates of return
Statistical forecasts
Statistical variance
Stochastic models
Stock returns
Studies
Time series
Time series forecasting
Volatility
title Realising the future: forecasting with high-frequency-based volatility (HEAVY) models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realising%20the%20future:%20forecasting%20with%20high-frequency-based%20volatility%20(HEAVY)%20models&rft.jtitle=Journal%20of%20applied%20econometrics%20(Chichester,%20England)&rft.au=Shephard,%20Neil&rft.date=2010-03&rft.volume=25&rft.issue=2&rft.spage=197&rft.epage=231&rft.pages=197-231&rft.issn=0883-7252&rft.eissn=1099-1255&rft.coden=JAECET&rft_id=info:doi/10.1002/jae.1158&rft_dat=%3Cjstor_proqu%3E40607017%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218761531&rft_id=info:pmid/&rft_jstor_id=40607017&rfr_iscdi=true