On collective utility functions admitting linear representations

Given n experts, a set X of alternative projects, and various classes of individual utility functions u 1 , … , u n on X, we characterize collective utility functions (CUFs) of the form F ( u 1 , … , u n ) = ∑ 1 n α i u i where α i are positive numbers.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical economics 2010-05, Vol.46 (3), p.364-371
1. Verfasser: Levin, Vladimir L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 371
container_issue 3
container_start_page 364
container_title Journal of mathematical economics
container_volume 46
creator Levin, Vladimir L.
description Given n experts, a set X of alternative projects, and various classes of individual utility functions u 1 , … , u n on X, we characterize collective utility functions (CUFs) of the form F ( u 1 , … , u n ) = ∑ 1 n α i u i where α i are positive numbers.
doi_str_mv 10.1016/j.jmateco.2010.01.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753825675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304406810000157</els_id><sourcerecordid>753825675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-6fa4b31026ee1b8b37515465d5fb4fe9538b8441d14d0d300f05a1a931c8995f3</originalsourceid><addsrcrecordid>eNqFUU2P0zAUtBBIlMJPQIq4cEr3Of6IewK0WmDRSnuBs-U4L-AocYrtVOq_53VbceDCYfykp5nRvDFjbznsOHB9M-7G2RX0y64B2gHfATTP2IabVtRcCfOcbUCArCVo85K9ynkEgLYFs2EfH2Pll2lCX8IRq7WEKZRTNayRFkvMlevnUEqIP6spRHSpSnhImDEW90R4zV4Mbsr45jq37Mfnu--3X-uHxy_3t58eai-lLrUenOwEh0Yj8s50olVcSa16NXRywD2l7IyUvOeyh14ADKAcd3vBvdnv1SC27P3F95CW3yvmYueQPU6Ti7is2bbk0ChNY8ve_cMclzVFCmebxtDdDTdEUheST0vOCQd7SGF26WQ52HOrdrTXVu25VQvcUquk-3bRUQ3o_4oQ8Uo-WuGkpudEeFIKFwiCcDhPLa1ouf1VZjL7cDFDKu4YMNnsA0aPfUj0IbZfwn_i_AHuJJue</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>228077218</pqid></control><display><type>article</type><title>On collective utility functions admitting linear representations</title><source>RePEc</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Levin, Vladimir L.</creator><creatorcontrib>Levin, Vladimir L.</creatorcontrib><description>Given n experts, a set X of alternative projects, and various classes of individual utility functions u 1 , … , u n on X, we characterize collective utility functions (CUFs) of the form F ( u 1 , … , u n ) = ∑ 1 n α i u i where α i are positive numbers.</description><identifier>ISSN: 0304-4068</identifier><identifier>EISSN: 1873-1538</identifier><identifier>DOI: 10.1016/j.jmateco.2010.01.002</identifier><identifier>CODEN: JMECDA</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>(Strongly) quasi-utilitarian CUF ; Collective utility function (CUF) ; Collective utility function (CUF) (Strongly) quasi-utilitarian CUF ; Linear equations ; Mathematical economics ; Studies ; Utility functions ; Utility theory</subject><ispartof>Journal of mathematical economics, 2010-05, Vol.46 (3), p.364-371</ispartof><rights>2010 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. May 20, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c446t-6fa4b31026ee1b8b37515465d5fb4fe9538b8441d14d0d300f05a1a931c8995f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmateco.2010.01.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4005,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeemateco/v_3a46_3ay_3a2010_3ai_3a3_3ap_3a364-371.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Levin, Vladimir L.</creatorcontrib><title>On collective utility functions admitting linear representations</title><title>Journal of mathematical economics</title><description>Given n experts, a set X of alternative projects, and various classes of individual utility functions u 1 , … , u n on X, we characterize collective utility functions (CUFs) of the form F ( u 1 , … , u n ) = ∑ 1 n α i u i where α i are positive numbers.</description><subject>(Strongly) quasi-utilitarian CUF</subject><subject>Collective utility function (CUF)</subject><subject>Collective utility function (CUF) (Strongly) quasi-utilitarian CUF</subject><subject>Linear equations</subject><subject>Mathematical economics</subject><subject>Studies</subject><subject>Utility functions</subject><subject>Utility theory</subject><issn>0304-4068</issn><issn>1873-1538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUU2P0zAUtBBIlMJPQIq4cEr3Of6IewK0WmDRSnuBs-U4L-AocYrtVOq_53VbceDCYfykp5nRvDFjbznsOHB9M-7G2RX0y64B2gHfATTP2IabVtRcCfOcbUCArCVo85K9ynkEgLYFs2EfH2Pll2lCX8IRq7WEKZRTNayRFkvMlevnUEqIP6spRHSpSnhImDEW90R4zV4Mbsr45jq37Mfnu--3X-uHxy_3t58eai-lLrUenOwEh0Yj8s50olVcSa16NXRywD2l7IyUvOeyh14ADKAcd3vBvdnv1SC27P3F95CW3yvmYueQPU6Ti7is2bbk0ChNY8ve_cMclzVFCmebxtDdDTdEUheST0vOCQd7SGF26WQ52HOrdrTXVu25VQvcUquk-3bRUQ3o_4oQ8Uo-WuGkpudEeFIKFwiCcDhPLa1ouf1VZjL7cDFDKu4YMNnsA0aPfUj0IbZfwn_i_AHuJJue</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Levin, Vladimir L.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>201005</creationdate><title>On collective utility functions admitting linear representations</title><author>Levin, Vladimir L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-6fa4b31026ee1b8b37515465d5fb4fe9538b8441d14d0d300f05a1a931c8995f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>(Strongly) quasi-utilitarian CUF</topic><topic>Collective utility function (CUF)</topic><topic>Collective utility function (CUF) (Strongly) quasi-utilitarian CUF</topic><topic>Linear equations</topic><topic>Mathematical economics</topic><topic>Studies</topic><topic>Utility functions</topic><topic>Utility theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levin, Vladimir L.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of mathematical economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levin, Vladimir L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On collective utility functions admitting linear representations</atitle><jtitle>Journal of mathematical economics</jtitle><date>2010-05</date><risdate>2010</risdate><volume>46</volume><issue>3</issue><spage>364</spage><epage>371</epage><pages>364-371</pages><issn>0304-4068</issn><eissn>1873-1538</eissn><coden>JMECDA</coden><abstract>Given n experts, a set X of alternative projects, and various classes of individual utility functions u 1 , … , u n on X, we characterize collective utility functions (CUFs) of the form F ( u 1 , … , u n ) = ∑ 1 n α i u i where α i are positive numbers.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmateco.2010.01.002</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-4068
ispartof Journal of mathematical economics, 2010-05, Vol.46 (3), p.364-371
issn 0304-4068
1873-1538
language eng
recordid cdi_proquest_miscellaneous_753825675
source RePEc; ScienceDirect Journals (5 years ago - present)
subjects (Strongly) quasi-utilitarian CUF
Collective utility function (CUF)
Collective utility function (CUF) (Strongly) quasi-utilitarian CUF
Linear equations
Mathematical economics
Studies
Utility functions
Utility theory
title On collective utility functions admitting linear representations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A29%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20collective%20utility%20functions%20admitting%20linear%20representations&rft.jtitle=Journal%20of%20mathematical%20economics&rft.au=Levin,%20Vladimir%20L.&rft.date=2010-05&rft.volume=46&rft.issue=3&rft.spage=364&rft.epage=371&rft.pages=364-371&rft.issn=0304-4068&rft.eissn=1873-1538&rft.coden=JMECDA&rft_id=info:doi/10.1016/j.jmateco.2010.01.002&rft_dat=%3Cproquest_cross%3E753825675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=228077218&rft_id=info:pmid/&rft_els_id=S0304406810000157&rfr_iscdi=true