Geometric motivic Poincaré series of quasi-ordinary singularities
The geometric motivic Poincaré series of a germ (S, 0) of complex algebraic variety takes into account the classes in the Grothendieck ring of the jets of arcs through (S, 0). Denef and Loeser proved that this series has a rational form. We give an explicit description of this invariant when (S, 0)...
Gespeichert in:
Veröffentlicht in: | Math. Proc. Camb. Phil. Soc 2010-07, Vol.149 (1), p.49-74 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74 |
---|---|
container_issue | 1 |
container_start_page | 49 |
container_title | Math. Proc. Camb. Phil. Soc |
container_volume | 149 |
creator | COBO PABLOS, HELENA GONZÁLEZ PÉREZ, PEDRO D. |
description | The geometric motivic Poincaré series of a germ (S, 0) of complex algebraic variety takes into account the classes in the Grothendieck ring of the jets of arcs through (S, 0). Denef and Loeser proved that this series has a rational form. We give an explicit description of this invariant when (S, 0) is an irreducible germ of quasi-ordinary hypersurface singularity in terms of the Newton polyhedra of the logarithmic jacobian ideals. These ideals are determined by the characteristic monomials of a quasi-ordinary branch parametrizing (S, 0). |
doi_str_mv | 10.1017/S0305004110000101 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_753764054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0305004110000101</cupid><sourcerecordid>2047687231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-1a6e98f7b5adf738e55dd281af633aa205879e7b8a588515a8462ddceb023ce63</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEuXxAewiNohFwK6fWUIFLaLiIWBtTROnuCQx2EkFn8R38GM4KgIJhDcjzT137ngQ2iP4iGAij-8wxRxjRgiOL7bW0IAwkaUKC7aOBr2c9vom2gphERmaETxAp2PjatN6mye1a-0y1htnmxz8x3sSjLcmJK5MXjoINnW-sA34tyTYZt5V4G0b9R20UUIVzO5X3UYP52f3o0k6vR5fjE6mac4EbVMCwmSqlDMORSmpMpwXxVARKAWlAEPMlcyMnCngSnHCQTExLIrczPCQ5kbQbXS4mvsIlX72to6baAdWT06muu9hzCmXki5JZA9W7LN3L50Jra5tyE1VQWNcF7TkVAqGOYvk_i9y4TrfxI9oyoXiPGP9OLKCcu9C8Kb8zidY9_fXf-4fPenKY0NrXr8N4J-0kFRyLca3ml3JyWh8iXUWefqVAfXM22Jufjb5P-UTgKCU1Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>356855941</pqid></control><display><type>article</type><title>Geometric motivic Poincaré series of quasi-ordinary singularities</title><source>Cambridge University Press Journals Complete</source><creator>COBO PABLOS, HELENA ; GONZÁLEZ PÉREZ, PEDRO D.</creator><creatorcontrib>COBO PABLOS, HELENA ; GONZÁLEZ PÉREZ, PEDRO D.</creatorcontrib><description>The geometric motivic Poincaré series of a germ (S, 0) of complex algebraic variety takes into account the classes in the Grothendieck ring of the jets of arcs through (S, 0). Denef and Loeser proved that this series has a rational form. We give an explicit description of this invariant when (S, 0) is an irreducible germ of quasi-ordinary hypersurface singularity in terms of the Newton polyhedra of the logarithmic jacobian ideals. These ideals are determined by the characteristic monomials of a quasi-ordinary branch parametrizing (S, 0).</description><identifier>ISSN: 0305-0041</identifier><identifier>EISSN: 1469-8064</identifier><identifier>DOI: 10.1017/S0305004110000101</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algebra ; Algebraic Geometry ; Geometry ; Invariants ; Jacobians ; Jets ; Mathematical analysis ; Mathematics ; Parameter estimation ; Polyhedra ; Polyhedrons ; Singularities</subject><ispartof>Math. Proc. Camb. Phil. Soc, 2010-07, Vol.149 (1), p.49-74</ispartof><rights>Copyright © Cambridge Philosophical Society 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-1a6e98f7b5adf738e55dd281af633aa205879e7b8a588515a8462ddceb023ce63</citedby><cites>FETCH-LOGICAL-c463t-1a6e98f7b5adf738e55dd281af633aa205879e7b8a588515a8462ddceb023ce63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0305004110000101/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,780,784,885,27924,27925,55628</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00535773$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>COBO PABLOS, HELENA</creatorcontrib><creatorcontrib>GONZÁLEZ PÉREZ, PEDRO D.</creatorcontrib><title>Geometric motivic Poincaré series of quasi-ordinary singularities</title><title>Math. Proc. Camb. Phil. Soc</title><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><description>The geometric motivic Poincaré series of a germ (S, 0) of complex algebraic variety takes into account the classes in the Grothendieck ring of the jets of arcs through (S, 0). Denef and Loeser proved that this series has a rational form. We give an explicit description of this invariant when (S, 0) is an irreducible germ of quasi-ordinary hypersurface singularity in terms of the Newton polyhedra of the logarithmic jacobian ideals. These ideals are determined by the characteristic monomials of a quasi-ordinary branch parametrizing (S, 0).</description><subject>Algebra</subject><subject>Algebraic Geometry</subject><subject>Geometry</subject><subject>Invariants</subject><subject>Jacobians</subject><subject>Jets</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Parameter estimation</subject><subject>Polyhedra</subject><subject>Polyhedrons</subject><subject>Singularities</subject><issn>0305-0041</issn><issn>1469-8064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtOwzAQRS0EEuXxAewiNohFwK6fWUIFLaLiIWBtTROnuCQx2EkFn8R38GM4KgIJhDcjzT137ngQ2iP4iGAij-8wxRxjRgiOL7bW0IAwkaUKC7aOBr2c9vom2gphERmaETxAp2PjatN6mye1a-0y1htnmxz8x3sSjLcmJK5MXjoINnW-sA34tyTYZt5V4G0b9R20UUIVzO5X3UYP52f3o0k6vR5fjE6mac4EbVMCwmSqlDMORSmpMpwXxVARKAWlAEPMlcyMnCngSnHCQTExLIrczPCQ5kbQbXS4mvsIlX72to6baAdWT06muu9hzCmXki5JZA9W7LN3L50Jra5tyE1VQWNcF7TkVAqGOYvk_i9y4TrfxI9oyoXiPGP9OLKCcu9C8Kb8zidY9_fXf-4fPenKY0NrXr8N4J-0kFRyLca3ml3JyWh8iXUWefqVAfXM22Jufjb5P-UTgKCU1Q</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>COBO PABLOS, HELENA</creator><creator>GONZÁLEZ PÉREZ, PEDRO D.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20100701</creationdate><title>Geometric motivic Poincaré series of quasi-ordinary singularities</title><author>COBO PABLOS, HELENA ; GONZÁLEZ PÉREZ, PEDRO D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-1a6e98f7b5adf738e55dd281af633aa205879e7b8a588515a8462ddceb023ce63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Algebraic Geometry</topic><topic>Geometry</topic><topic>Invariants</topic><topic>Jacobians</topic><topic>Jets</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Parameter estimation</topic><topic>Polyhedra</topic><topic>Polyhedrons</topic><topic>Singularities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>COBO PABLOS, HELENA</creatorcontrib><creatorcontrib>GONZÁLEZ PÉREZ, PEDRO D.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Math. Proc. Camb. Phil. Soc</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>COBO PABLOS, HELENA</au><au>GONZÁLEZ PÉREZ, PEDRO D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric motivic Poincaré series of quasi-ordinary singularities</atitle><jtitle>Math. Proc. Camb. Phil. Soc</jtitle><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><date>2010-07-01</date><risdate>2010</risdate><volume>149</volume><issue>1</issue><spage>49</spage><epage>74</epage><pages>49-74</pages><issn>0305-0041</issn><eissn>1469-8064</eissn><abstract>The geometric motivic Poincaré series of a germ (S, 0) of complex algebraic variety takes into account the classes in the Grothendieck ring of the jets of arcs through (S, 0). Denef and Loeser proved that this series has a rational form. We give an explicit description of this invariant when (S, 0) is an irreducible germ of quasi-ordinary hypersurface singularity in terms of the Newton polyhedra of the logarithmic jacobian ideals. These ideals are determined by the characteristic monomials of a quasi-ordinary branch parametrizing (S, 0).</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0305004110000101</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0041 |
ispartof | Math. Proc. Camb. Phil. Soc, 2010-07, Vol.149 (1), p.49-74 |
issn | 0305-0041 1469-8064 |
language | eng |
recordid | cdi_proquest_miscellaneous_753764054 |
source | Cambridge University Press Journals Complete |
subjects | Algebra Algebraic Geometry Geometry Invariants Jacobians Jets Mathematical analysis Mathematics Parameter estimation Polyhedra Polyhedrons Singularities |
title | Geometric motivic Poincaré series of quasi-ordinary singularities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20motivic%20Poincar%C3%A9%20series%20of%20quasi-ordinary%20singularities&rft.jtitle=Math.%20Proc.%20Camb.%20Phil.%20Soc&rft.au=COBO%20PABLOS,%20HELENA&rft.date=2010-07-01&rft.volume=149&rft.issue=1&rft.spage=49&rft.epage=74&rft.pages=49-74&rft.issn=0305-0041&rft.eissn=1469-8064&rft_id=info:doi/10.1017/S0305004110000101&rft_dat=%3Cproquest_hal_p%3E2047687231%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=356855941&rft_id=info:pmid/&rft_cupid=10_1017_S0305004110000101&rfr_iscdi=true |