Self-Assembled Plasmonic Nanoparticle Clusters
The self-assembly of colloids is an alternative to top-down processing that enables the fabrication of nanostructures. We show that self-assembled clusters of metal-dielectric spheres are the basis for nanophotonic structures. By tailoring the number and position of spheres in close-packed clusters,...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2010-05, Vol.328 (5982), p.1135-1138 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1138 |
---|---|
container_issue | 5982 |
container_start_page | 1135 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 328 |
creator | Fan, Jonathan A Wu, Chihhui Bao, Kui Bao, Jiming Bardhan, Rizia Halas, Naomi J Manoharan, Vinothan N Nordlander, Peter Shvets, Gennady Capasso, Federico |
description | The self-assembly of colloids is an alternative to top-down processing that enables the fabrication of nanostructures. We show that self-assembled clusters of metal-dielectric spheres are the basis for nanophotonic structures. By tailoring the number and position of spheres in close-packed clusters, plasmon modes exhibiting strong magnetic and Fano-like resonances emerge. The use of identical spheres simplifies cluster assembly and facilitates the fabrication of highly symmetric structures. Dielectric spacers are used to tailor the interparticle spacing in these clusters to be approximately 2 nanometers. These types of chemically synthesized nanoparticle clusters can be generalized to other two- and three-dimensional structures and can serve as building blocks for new metamaterials. |
doi_str_mv | 10.1126/science.1187949 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_753761677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40656317</jstor_id><sourcerecordid>40656317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-ca3c5d03e7f88ed3348303b2d848f3ef369796c3a83ef16c4add95896b857c653</originalsourceid><addsrcrecordid>eNpdkM1rGzEQxUVJqR2n55zamELoaRNJs_o6GtOkBdMG0pyFrNWGNdpdV7N7yH8fGW8dyGkY3m_ePB4hl4zeMMblLfomdD7kRStTmg9kzqgRheEUzsicUpCFpkrMyDnijtKsGfhEZpwKqhkXc3LzGGJdrBBDu42hWj5Eh23fNX7523X93qWh8TEs13HEISS8IB9rFzF8nuaCPN39-Lv-WWz-3P9arzaFF1wPhXfgRUUhqFrrUAGUGihseaVLXUOoQRplpAen88KkL11VGaGN3GqhvBSwIN-PvvvU_xsDDrZt0IcYXRf6Ea0SoCSTSmXy2zty14-py-EscMFASH6Abo-QTz1iCrXdp6Z16cUyag9F2qlIOxWZL75OtuO2DdWJ_99cBq4nwKF3sU6u8w2-cVwLboBl7suR2-HQp5NeUikksEO0q6Neu96655Q9nh45ZUCZLpXOn14BnFaNhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>325135627</pqid></control><display><type>article</type><title>Self-Assembled Plasmonic Nanoparticle Clusters</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Fan, Jonathan A ; Wu, Chihhui ; Bao, Kui ; Bao, Jiming ; Bardhan, Rizia ; Halas, Naomi J ; Manoharan, Vinothan N ; Nordlander, Peter ; Shvets, Gennady ; Capasso, Federico</creator><creatorcontrib>Fan, Jonathan A ; Wu, Chihhui ; Bao, Kui ; Bao, Jiming ; Bardhan, Rizia ; Halas, Naomi J ; Manoharan, Vinothan N ; Nordlander, Peter ; Shvets, Gennady ; Capasso, Federico</creatorcontrib><description>The self-assembly of colloids is an alternative to top-down processing that enables the fabrication of nanostructures. We show that self-assembled clusters of metal-dielectric spheres are the basis for nanophotonic structures. By tailoring the number and position of spheres in close-packed clusters, plasmon modes exhibiting strong magnetic and Fano-like resonances emerge. The use of identical spheres simplifies cluster assembly and facilitates the fabrication of highly symmetric structures. Dielectric spacers are used to tailor the interparticle spacing in these clusters to be approximately 2 nanometers. These types of chemically synthesized nanoparticle clusters can be generalized to other two- and three-dimensional structures and can serve as building blocks for new metamaterials.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1187949</identifier><identifier>PMID: 20508125</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Assembly ; Chemical synthesis ; Clusters ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electric dipoles ; Electric fields ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals ; Exact sciences and technology ; Magnetic dipoles ; Magnetic fields ; Materials science ; Metamaterials ; Methods of nanofabrication ; Nanocomposites ; Nanomaterials ; Nanoparticles ; Nanostructure ; Nanostructures ; Optical resonance ; Particle resonance ; Physics ; Plasmonics ; Resonance ; Resonance scattering ; Self assembly ; Spheres ; Trimers</subject><ispartof>Science (American Association for the Advancement of Science), 2010-05, Vol.328 (5982), p.1135-1138</ispartof><rights>2010 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-ca3c5d03e7f88ed3348303b2d848f3ef369796c3a83ef16c4add95896b857c653</citedby><cites>FETCH-LOGICAL-c528t-ca3c5d03e7f88ed3348303b2d848f3ef369796c3a83ef16c4add95896b857c653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40656317$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40656317$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22852931$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20508125$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Jonathan A</creatorcontrib><creatorcontrib>Wu, Chihhui</creatorcontrib><creatorcontrib>Bao, Kui</creatorcontrib><creatorcontrib>Bao, Jiming</creatorcontrib><creatorcontrib>Bardhan, Rizia</creatorcontrib><creatorcontrib>Halas, Naomi J</creatorcontrib><creatorcontrib>Manoharan, Vinothan N</creatorcontrib><creatorcontrib>Nordlander, Peter</creatorcontrib><creatorcontrib>Shvets, Gennady</creatorcontrib><creatorcontrib>Capasso, Federico</creatorcontrib><title>Self-Assembled Plasmonic Nanoparticle Clusters</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The self-assembly of colloids is an alternative to top-down processing that enables the fabrication of nanostructures. We show that self-assembled clusters of metal-dielectric spheres are the basis for nanophotonic structures. By tailoring the number and position of spheres in close-packed clusters, plasmon modes exhibiting strong magnetic and Fano-like resonances emerge. The use of identical spheres simplifies cluster assembly and facilitates the fabrication of highly symmetric structures. Dielectric spacers are used to tailor the interparticle spacing in these clusters to be approximately 2 nanometers. These types of chemically synthesized nanoparticle clusters can be generalized to other two- and three-dimensional structures and can serve as building blocks for new metamaterials.</description><subject>Assembly</subject><subject>Chemical synthesis</subject><subject>Clusters</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electric dipoles</subject><subject>Electric fields</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Exact sciences and technology</subject><subject>Magnetic dipoles</subject><subject>Magnetic fields</subject><subject>Materials science</subject><subject>Metamaterials</subject><subject>Methods of nanofabrication</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanostructures</subject><subject>Optical resonance</subject><subject>Particle resonance</subject><subject>Physics</subject><subject>Plasmonics</subject><subject>Resonance</subject><subject>Resonance scattering</subject><subject>Self assembly</subject><subject>Spheres</subject><subject>Trimers</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkM1rGzEQxUVJqR2n55zamELoaRNJs_o6GtOkBdMG0pyFrNWGNdpdV7N7yH8fGW8dyGkY3m_ePB4hl4zeMMblLfomdD7kRStTmg9kzqgRheEUzsicUpCFpkrMyDnijtKsGfhEZpwKqhkXc3LzGGJdrBBDu42hWj5Eh23fNX7523X93qWh8TEs13HEISS8IB9rFzF8nuaCPN39-Lv-WWz-3P9arzaFF1wPhXfgRUUhqFrrUAGUGihseaVLXUOoQRplpAen88KkL11VGaGN3GqhvBSwIN-PvvvU_xsDDrZt0IcYXRf6Ea0SoCSTSmXy2zty14-py-EscMFASH6Abo-QTz1iCrXdp6Z16cUyag9F2qlIOxWZL75OtuO2DdWJ_99cBq4nwKF3sU6u8w2-cVwLboBl7suR2-HQp5NeUikksEO0q6Neu96655Q9nh45ZUCZLpXOn14BnFaNhg</recordid><startdate>20100528</startdate><enddate>20100528</enddate><creator>Fan, Jonathan A</creator><creator>Wu, Chihhui</creator><creator>Bao, Kui</creator><creator>Bao, Jiming</creator><creator>Bardhan, Rizia</creator><creator>Halas, Naomi J</creator><creator>Manoharan, Vinothan N</creator><creator>Nordlander, Peter</creator><creator>Shvets, Gennady</creator><creator>Capasso, Federico</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20100528</creationdate><title>Self-Assembled Plasmonic Nanoparticle Clusters</title><author>Fan, Jonathan A ; Wu, Chihhui ; Bao, Kui ; Bao, Jiming ; Bardhan, Rizia ; Halas, Naomi J ; Manoharan, Vinothan N ; Nordlander, Peter ; Shvets, Gennady ; Capasso, Federico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-ca3c5d03e7f88ed3348303b2d848f3ef369796c3a83ef16c4add95896b857c653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Assembly</topic><topic>Chemical synthesis</topic><topic>Clusters</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electric dipoles</topic><topic>Electric fields</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Exact sciences and technology</topic><topic>Magnetic dipoles</topic><topic>Magnetic fields</topic><topic>Materials science</topic><topic>Metamaterials</topic><topic>Methods of nanofabrication</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanostructures</topic><topic>Optical resonance</topic><topic>Particle resonance</topic><topic>Physics</topic><topic>Plasmonics</topic><topic>Resonance</topic><topic>Resonance scattering</topic><topic>Self assembly</topic><topic>Spheres</topic><topic>Trimers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Jonathan A</creatorcontrib><creatorcontrib>Wu, Chihhui</creatorcontrib><creatorcontrib>Bao, Kui</creatorcontrib><creatorcontrib>Bao, Jiming</creatorcontrib><creatorcontrib>Bardhan, Rizia</creatorcontrib><creatorcontrib>Halas, Naomi J</creatorcontrib><creatorcontrib>Manoharan, Vinothan N</creatorcontrib><creatorcontrib>Nordlander, Peter</creatorcontrib><creatorcontrib>Shvets, Gennady</creatorcontrib><creatorcontrib>Capasso, Federico</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Jonathan A</au><au>Wu, Chihhui</au><au>Bao, Kui</au><au>Bao, Jiming</au><au>Bardhan, Rizia</au><au>Halas, Naomi J</au><au>Manoharan, Vinothan N</au><au>Nordlander, Peter</au><au>Shvets, Gennady</au><au>Capasso, Federico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Assembled Plasmonic Nanoparticle Clusters</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2010-05-28</date><risdate>2010</risdate><volume>328</volume><issue>5982</issue><spage>1135</spage><epage>1138</epage><pages>1135-1138</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The self-assembly of colloids is an alternative to top-down processing that enables the fabrication of nanostructures. We show that self-assembled clusters of metal-dielectric spheres are the basis for nanophotonic structures. By tailoring the number and position of spheres in close-packed clusters, plasmon modes exhibiting strong magnetic and Fano-like resonances emerge. The use of identical spheres simplifies cluster assembly and facilitates the fabrication of highly symmetric structures. Dielectric spacers are used to tailor the interparticle spacing in these clusters to be approximately 2 nanometers. These types of chemically synthesized nanoparticle clusters can be generalized to other two- and three-dimensional structures and can serve as building blocks for new metamaterials.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>20508125</pmid><doi>10.1126/science.1187949</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2010-05, Vol.328 (5982), p.1135-1138 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_753761677 |
source | American Association for the Advancement of Science; Jstor Complete Legacy |
subjects | Assembly Chemical synthesis Clusters Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science rheology Electric dipoles Electric fields Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals Exact sciences and technology Magnetic dipoles Magnetic fields Materials science Metamaterials Methods of nanofabrication Nanocomposites Nanomaterials Nanoparticles Nanostructure Nanostructures Optical resonance Particle resonance Physics Plasmonics Resonance Resonance scattering Self assembly Spheres Trimers |
title | Self-Assembled Plasmonic Nanoparticle Clusters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A45%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Assembled%20Plasmonic%20Nanoparticle%20Clusters&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Fan,%20Jonathan%20A&rft.date=2010-05-28&rft.volume=328&rft.issue=5982&rft.spage=1135&rft.epage=1138&rft.pages=1135-1138&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1187949&rft_dat=%3Cjstor_proqu%3E40656317%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=325135627&rft_id=info:pmid/20508125&rft_jstor_id=40656317&rfr_iscdi=true |