Self-Assembled Plasmonic Nanoparticle Clusters

The self-assembly of colloids is an alternative to top-down processing that enables the fabrication of nanostructures. We show that self-assembled clusters of metal-dielectric spheres are the basis for nanophotonic structures. By tailoring the number and position of spheres in close-packed clusters,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2010-05, Vol.328 (5982), p.1135-1138
Hauptverfasser: Fan, Jonathan A, Wu, Chihhui, Bao, Kui, Bao, Jiming, Bardhan, Rizia, Halas, Naomi J, Manoharan, Vinothan N, Nordlander, Peter, Shvets, Gennady, Capasso, Federico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1138
container_issue 5982
container_start_page 1135
container_title Science (American Association for the Advancement of Science)
container_volume 328
creator Fan, Jonathan A
Wu, Chihhui
Bao, Kui
Bao, Jiming
Bardhan, Rizia
Halas, Naomi J
Manoharan, Vinothan N
Nordlander, Peter
Shvets, Gennady
Capasso, Federico
description The self-assembly of colloids is an alternative to top-down processing that enables the fabrication of nanostructures. We show that self-assembled clusters of metal-dielectric spheres are the basis for nanophotonic structures. By tailoring the number and position of spheres in close-packed clusters, plasmon modes exhibiting strong magnetic and Fano-like resonances emerge. The use of identical spheres simplifies cluster assembly and facilitates the fabrication of highly symmetric structures. Dielectric spacers are used to tailor the interparticle spacing in these clusters to be approximately 2 nanometers. These types of chemically synthesized nanoparticle clusters can be generalized to other two- and three-dimensional structures and can serve as building blocks for new metamaterials.
doi_str_mv 10.1126/science.1187949
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_753761677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40656317</jstor_id><sourcerecordid>40656317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-ca3c5d03e7f88ed3348303b2d848f3ef369796c3a83ef16c4add95896b857c653</originalsourceid><addsrcrecordid>eNpdkM1rGzEQxUVJqR2n55zamELoaRNJs_o6GtOkBdMG0pyFrNWGNdpdV7N7yH8fGW8dyGkY3m_ePB4hl4zeMMblLfomdD7kRStTmg9kzqgRheEUzsicUpCFpkrMyDnijtKsGfhEZpwKqhkXc3LzGGJdrBBDu42hWj5Eh23fNX7523X93qWh8TEs13HEISS8IB9rFzF8nuaCPN39-Lv-WWz-3P9arzaFF1wPhXfgRUUhqFrrUAGUGihseaVLXUOoQRplpAen88KkL11VGaGN3GqhvBSwIN-PvvvU_xsDDrZt0IcYXRf6Ea0SoCSTSmXy2zty14-py-EscMFASH6Abo-QTz1iCrXdp6Z16cUyag9F2qlIOxWZL75OtuO2DdWJ_99cBq4nwKF3sU6u8w2-cVwLboBl7suR2-HQp5NeUikksEO0q6Neu96655Q9nh45ZUCZLpXOn14BnFaNhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>325135627</pqid></control><display><type>article</type><title>Self-Assembled Plasmonic Nanoparticle Clusters</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Fan, Jonathan A ; Wu, Chihhui ; Bao, Kui ; Bao, Jiming ; Bardhan, Rizia ; Halas, Naomi J ; Manoharan, Vinothan N ; Nordlander, Peter ; Shvets, Gennady ; Capasso, Federico</creator><creatorcontrib>Fan, Jonathan A ; Wu, Chihhui ; Bao, Kui ; Bao, Jiming ; Bardhan, Rizia ; Halas, Naomi J ; Manoharan, Vinothan N ; Nordlander, Peter ; Shvets, Gennady ; Capasso, Federico</creatorcontrib><description>The self-assembly of colloids is an alternative to top-down processing that enables the fabrication of nanostructures. We show that self-assembled clusters of metal-dielectric spheres are the basis for nanophotonic structures. By tailoring the number and position of spheres in close-packed clusters, plasmon modes exhibiting strong magnetic and Fano-like resonances emerge. The use of identical spheres simplifies cluster assembly and facilitates the fabrication of highly symmetric structures. Dielectric spacers are used to tailor the interparticle spacing in these clusters to be approximately 2 nanometers. These types of chemically synthesized nanoparticle clusters can be generalized to other two- and three-dimensional structures and can serve as building blocks for new metamaterials.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1187949</identifier><identifier>PMID: 20508125</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Assembly ; Chemical synthesis ; Clusters ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electric dipoles ; Electric fields ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals ; Exact sciences and technology ; Magnetic dipoles ; Magnetic fields ; Materials science ; Metamaterials ; Methods of nanofabrication ; Nanocomposites ; Nanomaterials ; Nanoparticles ; Nanostructure ; Nanostructures ; Optical resonance ; Particle resonance ; Physics ; Plasmonics ; Resonance ; Resonance scattering ; Self assembly ; Spheres ; Trimers</subject><ispartof>Science (American Association for the Advancement of Science), 2010-05, Vol.328 (5982), p.1135-1138</ispartof><rights>2010 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-ca3c5d03e7f88ed3348303b2d848f3ef369796c3a83ef16c4add95896b857c653</citedby><cites>FETCH-LOGICAL-c528t-ca3c5d03e7f88ed3348303b2d848f3ef369796c3a83ef16c4add95896b857c653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40656317$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40656317$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22852931$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20508125$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Jonathan A</creatorcontrib><creatorcontrib>Wu, Chihhui</creatorcontrib><creatorcontrib>Bao, Kui</creatorcontrib><creatorcontrib>Bao, Jiming</creatorcontrib><creatorcontrib>Bardhan, Rizia</creatorcontrib><creatorcontrib>Halas, Naomi J</creatorcontrib><creatorcontrib>Manoharan, Vinothan N</creatorcontrib><creatorcontrib>Nordlander, Peter</creatorcontrib><creatorcontrib>Shvets, Gennady</creatorcontrib><creatorcontrib>Capasso, Federico</creatorcontrib><title>Self-Assembled Plasmonic Nanoparticle Clusters</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The self-assembly of colloids is an alternative to top-down processing that enables the fabrication of nanostructures. We show that self-assembled clusters of metal-dielectric spheres are the basis for nanophotonic structures. By tailoring the number and position of spheres in close-packed clusters, plasmon modes exhibiting strong magnetic and Fano-like resonances emerge. The use of identical spheres simplifies cluster assembly and facilitates the fabrication of highly symmetric structures. Dielectric spacers are used to tailor the interparticle spacing in these clusters to be approximately 2 nanometers. These types of chemically synthesized nanoparticle clusters can be generalized to other two- and three-dimensional structures and can serve as building blocks for new metamaterials.</description><subject>Assembly</subject><subject>Chemical synthesis</subject><subject>Clusters</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electric dipoles</subject><subject>Electric fields</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Exact sciences and technology</subject><subject>Magnetic dipoles</subject><subject>Magnetic fields</subject><subject>Materials science</subject><subject>Metamaterials</subject><subject>Methods of nanofabrication</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanostructures</subject><subject>Optical resonance</subject><subject>Particle resonance</subject><subject>Physics</subject><subject>Plasmonics</subject><subject>Resonance</subject><subject>Resonance scattering</subject><subject>Self assembly</subject><subject>Spheres</subject><subject>Trimers</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkM1rGzEQxUVJqR2n55zamELoaRNJs_o6GtOkBdMG0pyFrNWGNdpdV7N7yH8fGW8dyGkY3m_ePB4hl4zeMMblLfomdD7kRStTmg9kzqgRheEUzsicUpCFpkrMyDnijtKsGfhEZpwKqhkXc3LzGGJdrBBDu42hWj5Eh23fNX7523X93qWh8TEs13HEISS8IB9rFzF8nuaCPN39-Lv-WWz-3P9arzaFF1wPhXfgRUUhqFrrUAGUGihseaVLXUOoQRplpAen88KkL11VGaGN3GqhvBSwIN-PvvvU_xsDDrZt0IcYXRf6Ea0SoCSTSmXy2zty14-py-EscMFASH6Abo-QTz1iCrXdp6Z16cUyag9F2qlIOxWZL75OtuO2DdWJ_99cBq4nwKF3sU6u8w2-cVwLboBl7suR2-HQp5NeUikksEO0q6Neu96655Q9nh45ZUCZLpXOn14BnFaNhg</recordid><startdate>20100528</startdate><enddate>20100528</enddate><creator>Fan, Jonathan A</creator><creator>Wu, Chihhui</creator><creator>Bao, Kui</creator><creator>Bao, Jiming</creator><creator>Bardhan, Rizia</creator><creator>Halas, Naomi J</creator><creator>Manoharan, Vinothan N</creator><creator>Nordlander, Peter</creator><creator>Shvets, Gennady</creator><creator>Capasso, Federico</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20100528</creationdate><title>Self-Assembled Plasmonic Nanoparticle Clusters</title><author>Fan, Jonathan A ; Wu, Chihhui ; Bao, Kui ; Bao, Jiming ; Bardhan, Rizia ; Halas, Naomi J ; Manoharan, Vinothan N ; Nordlander, Peter ; Shvets, Gennady ; Capasso, Federico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-ca3c5d03e7f88ed3348303b2d848f3ef369796c3a83ef16c4add95896b857c653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Assembly</topic><topic>Chemical synthesis</topic><topic>Clusters</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electric dipoles</topic><topic>Electric fields</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Exact sciences and technology</topic><topic>Magnetic dipoles</topic><topic>Magnetic fields</topic><topic>Materials science</topic><topic>Metamaterials</topic><topic>Methods of nanofabrication</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanostructures</topic><topic>Optical resonance</topic><topic>Particle resonance</topic><topic>Physics</topic><topic>Plasmonics</topic><topic>Resonance</topic><topic>Resonance scattering</topic><topic>Self assembly</topic><topic>Spheres</topic><topic>Trimers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Jonathan A</creatorcontrib><creatorcontrib>Wu, Chihhui</creatorcontrib><creatorcontrib>Bao, Kui</creatorcontrib><creatorcontrib>Bao, Jiming</creatorcontrib><creatorcontrib>Bardhan, Rizia</creatorcontrib><creatorcontrib>Halas, Naomi J</creatorcontrib><creatorcontrib>Manoharan, Vinothan N</creatorcontrib><creatorcontrib>Nordlander, Peter</creatorcontrib><creatorcontrib>Shvets, Gennady</creatorcontrib><creatorcontrib>Capasso, Federico</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Jonathan A</au><au>Wu, Chihhui</au><au>Bao, Kui</au><au>Bao, Jiming</au><au>Bardhan, Rizia</au><au>Halas, Naomi J</au><au>Manoharan, Vinothan N</au><au>Nordlander, Peter</au><au>Shvets, Gennady</au><au>Capasso, Federico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Assembled Plasmonic Nanoparticle Clusters</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2010-05-28</date><risdate>2010</risdate><volume>328</volume><issue>5982</issue><spage>1135</spage><epage>1138</epage><pages>1135-1138</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The self-assembly of colloids is an alternative to top-down processing that enables the fabrication of nanostructures. We show that self-assembled clusters of metal-dielectric spheres are the basis for nanophotonic structures. By tailoring the number and position of spheres in close-packed clusters, plasmon modes exhibiting strong magnetic and Fano-like resonances emerge. The use of identical spheres simplifies cluster assembly and facilitates the fabrication of highly symmetric structures. Dielectric spacers are used to tailor the interparticle spacing in these clusters to be approximately 2 nanometers. These types of chemically synthesized nanoparticle clusters can be generalized to other two- and three-dimensional structures and can serve as building blocks for new metamaterials.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>20508125</pmid><doi>10.1126/science.1187949</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2010-05, Vol.328 (5982), p.1135-1138
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_753761677
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects Assembly
Chemical synthesis
Clusters
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Electric dipoles
Electric fields
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals
Exact sciences and technology
Magnetic dipoles
Magnetic fields
Materials science
Metamaterials
Methods of nanofabrication
Nanocomposites
Nanomaterials
Nanoparticles
Nanostructure
Nanostructures
Optical resonance
Particle resonance
Physics
Plasmonics
Resonance
Resonance scattering
Self assembly
Spheres
Trimers
title Self-Assembled Plasmonic Nanoparticle Clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A45%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Assembled%20Plasmonic%20Nanoparticle%20Clusters&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Fan,%20Jonathan%20A&rft.date=2010-05-28&rft.volume=328&rft.issue=5982&rft.spage=1135&rft.epage=1138&rft.pages=1135-1138&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1187949&rft_dat=%3Cjstor_proqu%3E40656317%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=325135627&rft_id=info:pmid/20508125&rft_jstor_id=40656317&rfr_iscdi=true