A turning restriction design problem in urban road networks

Turning restriction is one of the commonest traffic management techniques and an effective low cost traffic improvement strategy in urban road networks. However, the literature has not paid much attention to the turning restriction design problem (TRDP), which aims to determine a set of intersection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2010-11, Vol.206 (3), p.569-578
Hauptverfasser: Long, Jiancheng, Gao, Ziyou, Zhang, Haozhi, Szeto, W.Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 578
container_issue 3
container_start_page 569
container_title European journal of operational research
container_volume 206
creator Long, Jiancheng
Gao, Ziyou
Zhang, Haozhi
Szeto, W.Y.
description Turning restriction is one of the commonest traffic management techniques and an effective low cost traffic improvement strategy in urban road networks. However, the literature has not paid much attention to the turning restriction design problem (TRDP), which aims to determine a set of intersections where turning restrictions should be implemented. In this paper, a bi-level programming model is proposed to formulate the TRDP. The upper level problem is to minimize the total travel cost from the viewpoint of traffic managers, and the lower level problem is to depict travelers’ route choice behavior based on stochastic user equilibrium (SUE) theory. We propose a branch and bound method (BBM), based on the sensitivity analysis algorithm (SAA), to find the optimal turning restriction strategy. A branch strategy and a bound strategy are applied to accelerate the solution process of the TRDP. The computational experiments give promising results, showing that the optimal turning restriction strategy can obviously reduce system congestion and are robust to the variations of both the dispersion parameter of the SUE problem and the level of demand.
doi_str_mv 10.1016/j.ejor.2010.03.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753751389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221710002122</els_id><sourcerecordid>753751389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-783d3ca9cd46aaea0856b7d0693d69dfd00d373cba118f37a53c37f05e3d36ef3</originalsourceid><addsrcrecordid>eNp9kEGLFDEQhYMoOK7-AU-NIJ56rKQmSTd6WRZ1Fxe86Dlkkuo1bU96THp22X9vjbPswYOBSoXwveLVE-K1hLUEad6PaxrnslbAH4BrkPhErGRnVWs6A0_FCtDaVilpn4sXtY4AILXUK_HhvFkOJad80xSqS0lhSXNuItV0k5t9mbcT7ZqUm0PZ-tyU2ccm03I3l1_1pXg2-KnSq4d-Jn58_vT94rK9_vbl6uL8ug0a1dLaDiMG34e4Md6Th06brY1geoymj0MEiGgxbL2U3YDWawxoB9DEOkMDnol3p7ls5_eBXbpdqoGmyWeaD9VZjVZL7Hom3_xDjjNvx-acgo3cbHplGVInKJS51kKD25e08-XeSXDHNN3ojmm6Y5oO0HGaLPp6EhXaU3hUEB9Gqbpbh16B4fv-74ul6BMXcu25tOmdtp37uex42tsHn74GPw3F55Dq41SleJ8eNXMfTxxxvLeJiqshUQ4UU6GwuDin_5n-A1gco2k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204144927</pqid></control><display><type>article</type><title>A turning restriction design problem in urban road networks</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Long, Jiancheng ; Gao, Ziyou ; Zhang, Haozhi ; Szeto, W.Y.</creator><creatorcontrib>Long, Jiancheng ; Gao, Ziyou ; Zhang, Haozhi ; Szeto, W.Y.</creatorcontrib><description>Turning restriction is one of the commonest traffic management techniques and an effective low cost traffic improvement strategy in urban road networks. However, the literature has not paid much attention to the turning restriction design problem (TRDP), which aims to determine a set of intersections where turning restrictions should be implemented. In this paper, a bi-level programming model is proposed to formulate the TRDP. The upper level problem is to minimize the total travel cost from the viewpoint of traffic managers, and the lower level problem is to depict travelers’ route choice behavior based on stochastic user equilibrium (SUE) theory. We propose a branch and bound method (BBM), based on the sensitivity analysis algorithm (SAA), to find the optimal turning restriction strategy. A branch strategy and a bound strategy are applied to accelerate the solution process of the TRDP. The computational experiments give promising results, showing that the optimal turning restriction strategy can obviously reduce system congestion and are robust to the variations of both the dispersion parameter of the SUE problem and the level of demand.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2010.03.013</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Bi-level programming ; Branch &amp; bound algorithms ; Branch and bound method ; Constrictions ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Game theory ; Ground, air and sea transportation, marine construction ; Mathematical models ; Mathematical programming ; Networks ; Operational research and scientific management ; Operational research. Management science ; Optimization algorithms ; Road transportation and traffic ; Roads ; Sensitivity analysis ; Stochastic models ; Stochastic user equilibrium ; Strategy ; Studies ; Traffic congestion ; Traffic control ; Traffic engineering ; Traffic flow ; Turning ; Turning restriction design problem ; Turning restriction design problem Bi-level programming Stochastic user equilibrium Sensitivity analysis Branch and bound method</subject><ispartof>European journal of operational research, 2010-11, Vol.206 (3), p.569-578</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Nov 1, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-783d3ca9cd46aaea0856b7d0693d69dfd00d373cba118f37a53c37f05e3d36ef3</citedby><cites>FETCH-LOGICAL-c532t-783d3ca9cd46aaea0856b7d0693d69dfd00d373cba118f37a53c37f05e3d36ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2010.03.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22751935$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a206_3ay_3a2010_3ai_3a3_3ap_3a569-578.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Long, Jiancheng</creatorcontrib><creatorcontrib>Gao, Ziyou</creatorcontrib><creatorcontrib>Zhang, Haozhi</creatorcontrib><creatorcontrib>Szeto, W.Y.</creatorcontrib><title>A turning restriction design problem in urban road networks</title><title>European journal of operational research</title><description>Turning restriction is one of the commonest traffic management techniques and an effective low cost traffic improvement strategy in urban road networks. However, the literature has not paid much attention to the turning restriction design problem (TRDP), which aims to determine a set of intersections where turning restrictions should be implemented. In this paper, a bi-level programming model is proposed to formulate the TRDP. The upper level problem is to minimize the total travel cost from the viewpoint of traffic managers, and the lower level problem is to depict travelers’ route choice behavior based on stochastic user equilibrium (SUE) theory. We propose a branch and bound method (BBM), based on the sensitivity analysis algorithm (SAA), to find the optimal turning restriction strategy. A branch strategy and a bound strategy are applied to accelerate the solution process of the TRDP. The computational experiments give promising results, showing that the optimal turning restriction strategy can obviously reduce system congestion and are robust to the variations of both the dispersion parameter of the SUE problem and the level of demand.</description><subject>Applied sciences</subject><subject>Bi-level programming</subject><subject>Branch &amp; bound algorithms</subject><subject>Branch and bound method</subject><subject>Constrictions</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Game theory</subject><subject>Ground, air and sea transportation, marine construction</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Networks</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization algorithms</subject><subject>Road transportation and traffic</subject><subject>Roads</subject><subject>Sensitivity analysis</subject><subject>Stochastic models</subject><subject>Stochastic user equilibrium</subject><subject>Strategy</subject><subject>Studies</subject><subject>Traffic congestion</subject><subject>Traffic control</subject><subject>Traffic engineering</subject><subject>Traffic flow</subject><subject>Turning</subject><subject>Turning restriction design problem</subject><subject>Turning restriction design problem Bi-level programming Stochastic user equilibrium Sensitivity analysis Branch and bound method</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kEGLFDEQhYMoOK7-AU-NIJ56rKQmSTd6WRZ1Fxe86Dlkkuo1bU96THp22X9vjbPswYOBSoXwveLVE-K1hLUEad6PaxrnslbAH4BrkPhErGRnVWs6A0_FCtDaVilpn4sXtY4AILXUK_HhvFkOJad80xSqS0lhSXNuItV0k5t9mbcT7ZqUm0PZ-tyU2ccm03I3l1_1pXg2-KnSq4d-Jn58_vT94rK9_vbl6uL8ug0a1dLaDiMG34e4Md6Th06brY1geoymj0MEiGgxbL2U3YDWawxoB9DEOkMDnol3p7ls5_eBXbpdqoGmyWeaD9VZjVZL7Hom3_xDjjNvx-acgo3cbHplGVInKJS51kKD25e08-XeSXDHNN3ojmm6Y5oO0HGaLPp6EhXaU3hUEB9Gqbpbh16B4fv-74ul6BMXcu25tOmdtp37uex42tsHn74GPw3F55Dq41SleJ8eNXMfTxxxvLeJiqshUQ4UU6GwuDin_5n-A1gco2k</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Long, Jiancheng</creator><creator>Gao, Ziyou</creator><creator>Zhang, Haozhi</creator><creator>Szeto, W.Y.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TA</scope><scope>JG9</scope></search><sort><creationdate>20101101</creationdate><title>A turning restriction design problem in urban road networks</title><author>Long, Jiancheng ; Gao, Ziyou ; Zhang, Haozhi ; Szeto, W.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-783d3ca9cd46aaea0856b7d0693d69dfd00d373cba118f37a53c37f05e3d36ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Bi-level programming</topic><topic>Branch &amp; bound algorithms</topic><topic>Branch and bound method</topic><topic>Constrictions</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Game theory</topic><topic>Ground, air and sea transportation, marine construction</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Networks</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization algorithms</topic><topic>Road transportation and traffic</topic><topic>Roads</topic><topic>Sensitivity analysis</topic><topic>Stochastic models</topic><topic>Stochastic user equilibrium</topic><topic>Strategy</topic><topic>Studies</topic><topic>Traffic congestion</topic><topic>Traffic control</topic><topic>Traffic engineering</topic><topic>Traffic flow</topic><topic>Turning</topic><topic>Turning restriction design problem</topic><topic>Turning restriction design problem Bi-level programming Stochastic user equilibrium Sensitivity analysis Branch and bound method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Jiancheng</creatorcontrib><creatorcontrib>Gao, Ziyou</creatorcontrib><creatorcontrib>Zhang, Haozhi</creatorcontrib><creatorcontrib>Szeto, W.Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Materials Business File</collection><collection>Materials Research Database</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Jiancheng</au><au>Gao, Ziyou</au><au>Zhang, Haozhi</au><au>Szeto, W.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A turning restriction design problem in urban road networks</atitle><jtitle>European journal of operational research</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>206</volume><issue>3</issue><spage>569</spage><epage>578</epage><pages>569-578</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>Turning restriction is one of the commonest traffic management techniques and an effective low cost traffic improvement strategy in urban road networks. However, the literature has not paid much attention to the turning restriction design problem (TRDP), which aims to determine a set of intersections where turning restrictions should be implemented. In this paper, a bi-level programming model is proposed to formulate the TRDP. The upper level problem is to minimize the total travel cost from the viewpoint of traffic managers, and the lower level problem is to depict travelers’ route choice behavior based on stochastic user equilibrium (SUE) theory. We propose a branch and bound method (BBM), based on the sensitivity analysis algorithm (SAA), to find the optimal turning restriction strategy. A branch strategy and a bound strategy are applied to accelerate the solution process of the TRDP. The computational experiments give promising results, showing that the optimal turning restriction strategy can obviously reduce system congestion and are robust to the variations of both the dispersion parameter of the SUE problem and the level of demand.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2010.03.013</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2010-11, Vol.206 (3), p.569-578
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_miscellaneous_753751389
source RePEc; Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Bi-level programming
Branch & bound algorithms
Branch and bound method
Constrictions
Exact sciences and technology
Flows in networks. Combinatorial problems
Game theory
Ground, air and sea transportation, marine construction
Mathematical models
Mathematical programming
Networks
Operational research and scientific management
Operational research. Management science
Optimization algorithms
Road transportation and traffic
Roads
Sensitivity analysis
Stochastic models
Stochastic user equilibrium
Strategy
Studies
Traffic congestion
Traffic control
Traffic engineering
Traffic flow
Turning
Turning restriction design problem
Turning restriction design problem Bi-level programming Stochastic user equilibrium Sensitivity analysis Branch and bound method
title A turning restriction design problem in urban road networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A26%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20turning%20restriction%20design%20problem%20in%20urban%20road%20networks&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Long,%20Jiancheng&rft.date=2010-11-01&rft.volume=206&rft.issue=3&rft.spage=569&rft.epage=578&rft.pages=569-578&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2010.03.013&rft_dat=%3Cproquest_cross%3E753751389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204144927&rft_id=info:pmid/&rft_els_id=S0377221710002122&rfr_iscdi=true