A turning restriction design problem in urban road networks
Turning restriction is one of the commonest traffic management techniques and an effective low cost traffic improvement strategy in urban road networks. However, the literature has not paid much attention to the turning restriction design problem (TRDP), which aims to determine a set of intersection...
Gespeichert in:
Veröffentlicht in: | European journal of operational research 2010-11, Vol.206 (3), p.569-578 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 578 |
---|---|
container_issue | 3 |
container_start_page | 569 |
container_title | European journal of operational research |
container_volume | 206 |
creator | Long, Jiancheng Gao, Ziyou Zhang, Haozhi Szeto, W.Y. |
description | Turning restriction is one of the commonest traffic management techniques and an effective low cost traffic improvement strategy in urban road networks. However, the literature has not paid much attention to the turning restriction design problem (TRDP), which aims to determine a set of intersections where turning restrictions should be implemented. In this paper, a bi-level programming model is proposed to formulate the TRDP. The upper level problem is to minimize the total travel cost from the viewpoint of traffic managers, and the lower level problem is to depict travelers’ route choice behavior based on stochastic user equilibrium (SUE) theory. We propose a branch and bound method (BBM), based on the sensitivity analysis algorithm (SAA), to find the optimal turning restriction strategy. A branch strategy and a bound strategy are applied to accelerate the solution process of the TRDP. The computational experiments give promising results, showing that the optimal turning restriction strategy can obviously reduce system congestion and are robust to the variations of both the dispersion parameter of the SUE problem and the level of demand. |
doi_str_mv | 10.1016/j.ejor.2010.03.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753751389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221710002122</els_id><sourcerecordid>753751389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-783d3ca9cd46aaea0856b7d0693d69dfd00d373cba118f37a53c37f05e3d36ef3</originalsourceid><addsrcrecordid>eNp9kEGLFDEQhYMoOK7-AU-NIJ56rKQmSTd6WRZ1Fxe86Dlkkuo1bU96THp22X9vjbPswYOBSoXwveLVE-K1hLUEad6PaxrnslbAH4BrkPhErGRnVWs6A0_FCtDaVilpn4sXtY4AILXUK_HhvFkOJad80xSqS0lhSXNuItV0k5t9mbcT7ZqUm0PZ-tyU2ccm03I3l1_1pXg2-KnSq4d-Jn58_vT94rK9_vbl6uL8ug0a1dLaDiMG34e4Md6Th06brY1geoymj0MEiGgxbL2U3YDWawxoB9DEOkMDnol3p7ls5_eBXbpdqoGmyWeaD9VZjVZL7Hom3_xDjjNvx-acgo3cbHplGVInKJS51kKD25e08-XeSXDHNN3ojmm6Y5oO0HGaLPp6EhXaU3hUEB9Gqbpbh16B4fv-74ul6BMXcu25tOmdtp37uex42tsHn74GPw3F55Dq41SleJ8eNXMfTxxxvLeJiqshUQ4UU6GwuDin_5n-A1gco2k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204144927</pqid></control><display><type>article</type><title>A turning restriction design problem in urban road networks</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Long, Jiancheng ; Gao, Ziyou ; Zhang, Haozhi ; Szeto, W.Y.</creator><creatorcontrib>Long, Jiancheng ; Gao, Ziyou ; Zhang, Haozhi ; Szeto, W.Y.</creatorcontrib><description>Turning restriction is one of the commonest traffic management techniques and an effective low cost traffic improvement strategy in urban road networks. However, the literature has not paid much attention to the turning restriction design problem (TRDP), which aims to determine a set of intersections where turning restrictions should be implemented. In this paper, a bi-level programming model is proposed to formulate the TRDP. The upper level problem is to minimize the total travel cost from the viewpoint of traffic managers, and the lower level problem is to depict travelers’ route choice behavior based on stochastic user equilibrium (SUE) theory. We propose a branch and bound method (BBM), based on the sensitivity analysis algorithm (SAA), to find the optimal turning restriction strategy. A branch strategy and a bound strategy are applied to accelerate the solution process of the TRDP. The computational experiments give promising results, showing that the optimal turning restriction strategy can obviously reduce system congestion and are robust to the variations of both the dispersion parameter of the SUE problem and the level of demand.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2010.03.013</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Bi-level programming ; Branch & bound algorithms ; Branch and bound method ; Constrictions ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Game theory ; Ground, air and sea transportation, marine construction ; Mathematical models ; Mathematical programming ; Networks ; Operational research and scientific management ; Operational research. Management science ; Optimization algorithms ; Road transportation and traffic ; Roads ; Sensitivity analysis ; Stochastic models ; Stochastic user equilibrium ; Strategy ; Studies ; Traffic congestion ; Traffic control ; Traffic engineering ; Traffic flow ; Turning ; Turning restriction design problem ; Turning restriction design problem Bi-level programming Stochastic user equilibrium Sensitivity analysis Branch and bound method</subject><ispartof>European journal of operational research, 2010-11, Vol.206 (3), p.569-578</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Nov 1, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-783d3ca9cd46aaea0856b7d0693d69dfd00d373cba118f37a53c37f05e3d36ef3</citedby><cites>FETCH-LOGICAL-c532t-783d3ca9cd46aaea0856b7d0693d69dfd00d373cba118f37a53c37f05e3d36ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2010.03.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22751935$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a206_3ay_3a2010_3ai_3a3_3ap_3a569-578.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Long, Jiancheng</creatorcontrib><creatorcontrib>Gao, Ziyou</creatorcontrib><creatorcontrib>Zhang, Haozhi</creatorcontrib><creatorcontrib>Szeto, W.Y.</creatorcontrib><title>A turning restriction design problem in urban road networks</title><title>European journal of operational research</title><description>Turning restriction is one of the commonest traffic management techniques and an effective low cost traffic improvement strategy in urban road networks. However, the literature has not paid much attention to the turning restriction design problem (TRDP), which aims to determine a set of intersections where turning restrictions should be implemented. In this paper, a bi-level programming model is proposed to formulate the TRDP. The upper level problem is to minimize the total travel cost from the viewpoint of traffic managers, and the lower level problem is to depict travelers’ route choice behavior based on stochastic user equilibrium (SUE) theory. We propose a branch and bound method (BBM), based on the sensitivity analysis algorithm (SAA), to find the optimal turning restriction strategy. A branch strategy and a bound strategy are applied to accelerate the solution process of the TRDP. The computational experiments give promising results, showing that the optimal turning restriction strategy can obviously reduce system congestion and are robust to the variations of both the dispersion parameter of the SUE problem and the level of demand.</description><subject>Applied sciences</subject><subject>Bi-level programming</subject><subject>Branch & bound algorithms</subject><subject>Branch and bound method</subject><subject>Constrictions</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Game theory</subject><subject>Ground, air and sea transportation, marine construction</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Networks</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization algorithms</subject><subject>Road transportation and traffic</subject><subject>Roads</subject><subject>Sensitivity analysis</subject><subject>Stochastic models</subject><subject>Stochastic user equilibrium</subject><subject>Strategy</subject><subject>Studies</subject><subject>Traffic congestion</subject><subject>Traffic control</subject><subject>Traffic engineering</subject><subject>Traffic flow</subject><subject>Turning</subject><subject>Turning restriction design problem</subject><subject>Turning restriction design problem Bi-level programming Stochastic user equilibrium Sensitivity analysis Branch and bound method</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kEGLFDEQhYMoOK7-AU-NIJ56rKQmSTd6WRZ1Fxe86Dlkkuo1bU96THp22X9vjbPswYOBSoXwveLVE-K1hLUEad6PaxrnslbAH4BrkPhErGRnVWs6A0_FCtDaVilpn4sXtY4AILXUK_HhvFkOJad80xSqS0lhSXNuItV0k5t9mbcT7ZqUm0PZ-tyU2ccm03I3l1_1pXg2-KnSq4d-Jn58_vT94rK9_vbl6uL8ug0a1dLaDiMG34e4Md6Th06brY1geoymj0MEiGgxbL2U3YDWawxoB9DEOkMDnol3p7ls5_eBXbpdqoGmyWeaD9VZjVZL7Hom3_xDjjNvx-acgo3cbHplGVInKJS51kKD25e08-XeSXDHNN3ojmm6Y5oO0HGaLPp6EhXaU3hUEB9Gqbpbh16B4fv-74ul6BMXcu25tOmdtp37uex42tsHn74GPw3F55Dq41SleJ8eNXMfTxxxvLeJiqshUQ4UU6GwuDin_5n-A1gco2k</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Long, Jiancheng</creator><creator>Gao, Ziyou</creator><creator>Zhang, Haozhi</creator><creator>Szeto, W.Y.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TA</scope><scope>JG9</scope></search><sort><creationdate>20101101</creationdate><title>A turning restriction design problem in urban road networks</title><author>Long, Jiancheng ; Gao, Ziyou ; Zhang, Haozhi ; Szeto, W.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-783d3ca9cd46aaea0856b7d0693d69dfd00d373cba118f37a53c37f05e3d36ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Bi-level programming</topic><topic>Branch & bound algorithms</topic><topic>Branch and bound method</topic><topic>Constrictions</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Game theory</topic><topic>Ground, air and sea transportation, marine construction</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Networks</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization algorithms</topic><topic>Road transportation and traffic</topic><topic>Roads</topic><topic>Sensitivity analysis</topic><topic>Stochastic models</topic><topic>Stochastic user equilibrium</topic><topic>Strategy</topic><topic>Studies</topic><topic>Traffic congestion</topic><topic>Traffic control</topic><topic>Traffic engineering</topic><topic>Traffic flow</topic><topic>Turning</topic><topic>Turning restriction design problem</topic><topic>Turning restriction design problem Bi-level programming Stochastic user equilibrium Sensitivity analysis Branch and bound method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Jiancheng</creatorcontrib><creatorcontrib>Gao, Ziyou</creatorcontrib><creatorcontrib>Zhang, Haozhi</creatorcontrib><creatorcontrib>Szeto, W.Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Materials Business File</collection><collection>Materials Research Database</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Jiancheng</au><au>Gao, Ziyou</au><au>Zhang, Haozhi</au><au>Szeto, W.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A turning restriction design problem in urban road networks</atitle><jtitle>European journal of operational research</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>206</volume><issue>3</issue><spage>569</spage><epage>578</epage><pages>569-578</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>Turning restriction is one of the commonest traffic management techniques and an effective low cost traffic improvement strategy in urban road networks. However, the literature has not paid much attention to the turning restriction design problem (TRDP), which aims to determine a set of intersections where turning restrictions should be implemented. In this paper, a bi-level programming model is proposed to formulate the TRDP. The upper level problem is to minimize the total travel cost from the viewpoint of traffic managers, and the lower level problem is to depict travelers’ route choice behavior based on stochastic user equilibrium (SUE) theory. We propose a branch and bound method (BBM), based on the sensitivity analysis algorithm (SAA), to find the optimal turning restriction strategy. A branch strategy and a bound strategy are applied to accelerate the solution process of the TRDP. The computational experiments give promising results, showing that the optimal turning restriction strategy can obviously reduce system congestion and are robust to the variations of both the dispersion parameter of the SUE problem and the level of demand.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2010.03.013</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-2217 |
ispartof | European journal of operational research, 2010-11, Vol.206 (3), p.569-578 |
issn | 0377-2217 1872-6860 |
language | eng |
recordid | cdi_proquest_miscellaneous_753751389 |
source | RePEc; Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Bi-level programming Branch & bound algorithms Branch and bound method Constrictions Exact sciences and technology Flows in networks. Combinatorial problems Game theory Ground, air and sea transportation, marine construction Mathematical models Mathematical programming Networks Operational research and scientific management Operational research. Management science Optimization algorithms Road transportation and traffic Roads Sensitivity analysis Stochastic models Stochastic user equilibrium Strategy Studies Traffic congestion Traffic control Traffic engineering Traffic flow Turning Turning restriction design problem Turning restriction design problem Bi-level programming Stochastic user equilibrium Sensitivity analysis Branch and bound method |
title | A turning restriction design problem in urban road networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A26%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20turning%20restriction%20design%20problem%20in%20urban%20road%20networks&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Long,%20Jiancheng&rft.date=2010-11-01&rft.volume=206&rft.issue=3&rft.spage=569&rft.epage=578&rft.pages=569-578&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2010.03.013&rft_dat=%3Cproquest_cross%3E753751389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204144927&rft_id=info:pmid/&rft_els_id=S0377221710002122&rfr_iscdi=true |