Model adaptivity for industrial application of sheet metal forming simulation
In finite element simulation of sheet metal forming, shell elements are widely used. The limits of applicability of the shell elements are sometimes disregarded, which leads to an error in predictions of important values such as springback geometry. The underlying kinematic assumptions of the shell...
Gespeichert in:
Veröffentlicht in: | Finite elements in analysis and design 2010-07, Vol.46 (7), p.585-600 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 600 |
---|---|
container_issue | 7 |
container_start_page | 585 |
container_title | Finite elements in analysis and design |
container_volume | 46 |
creator | Ledentsov, Dmitry Düster, Alexander Volk, Wolfram Wagner, Marcus Heinle, Ingo Rank, Ernst |
description | In finite element simulation of sheet metal forming, shell elements are widely used. The limits of applicability of the shell elements are sometimes disregarded, which leads to an error in predictions of important values such as springback geometry. The underlying kinematic assumptions of the shell elements do not hold where the thickness of the metal sheet approaches the value of the radius of curvature. Complex three-dimensional material behavior effects cannot be represented precisely as the result of the simplified kinematics. Here we present a model adaptivity scheme based on a model error indicator. The model-adaptive technique presented in this paper aides to resolve only the critical areas of the structure with a three-dimensional discretization while keeping reasonable computational cost by utilizing shell elements for the rest of the structure. The model error indicator serves as a guide for subsequent automatic adaptive re-meshing of the work-piece followed by a model-adaptive finite element analysis. The accuracy of the approximation obtained by the model-adaptive technique coincides well with that of a more expensive solution obtained with solid elements only. |
doi_str_mv | 10.1016/j.finel.2010.02.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753751301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168874X10000259</els_id><sourcerecordid>753751301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-9ec56b7289b50f38c1078690ae790470d469c1a4f03d57f3836248e867c56763</originalsourceid><addsrcrecordid>eNp9kDlPAzEQhS0EEuH4BTTbIKoNY3t9bEGBIi4pEQ0FnWW8s-BoL2wHiX-PSSJKqpHmfe-N5hFyQWFOgcrr9bz1A3ZzBnkDbA4gD8iMasVKWTNxSGaZ0qVW1esxOYlxDQCCyWpGVquxwa6wjZ2S__Lpu2jHUPih2cQUvM3KNHXe2eTHoRjbIn4gpqLHlKVM9n54L6LvN92WOCNHre0inu_nKXm5v3tZPJbL54enxe2ydFyKVNbohHxTTNdvAlquHQWlZQ0WVQ2VgqaStaO2aoE3QmWAS1Zp1FJln5L8lFztYqcwfm4wJtP76LDr7IDjJholuBKUA80k35EujDEGbM0UfG_Dt6Fgfqsza7OtzvxWZ4CZXF12Xe7zbXS2a4MdnI9_VsZkLUDzzN3sOMy_fnkMJjqPg8PGB3TJNKP_984PYMKFBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753751301</pqid></control><display><type>article</type><title>Model adaptivity for industrial application of sheet metal forming simulation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ledentsov, Dmitry ; Düster, Alexander ; Volk, Wolfram ; Wagner, Marcus ; Heinle, Ingo ; Rank, Ernst</creator><creatorcontrib>Ledentsov, Dmitry ; Düster, Alexander ; Volk, Wolfram ; Wagner, Marcus ; Heinle, Ingo ; Rank, Ernst</creatorcontrib><description>In finite element simulation of sheet metal forming, shell elements are widely used. The limits of applicability of the shell elements are sometimes disregarded, which leads to an error in predictions of important values such as springback geometry. The underlying kinematic assumptions of the shell elements do not hold where the thickness of the metal sheet approaches the value of the radius of curvature. Complex three-dimensional material behavior effects cannot be represented precisely as the result of the simplified kinematics. Here we present a model adaptivity scheme based on a model error indicator. The model-adaptive technique presented in this paper aides to resolve only the critical areas of the structure with a three-dimensional discretization while keeping reasonable computational cost by utilizing shell elements for the rest of the structure. The model error indicator serves as a guide for subsequent automatic adaptive re-meshing of the work-piece followed by a model-adaptive finite element analysis. The accuracy of the approximation obtained by the model-adaptive technique coincides well with that of a more expensive solution obtained with solid elements only.</description><identifier>ISSN: 0168-874X</identifier><identifier>EISSN: 1872-6925</identifier><identifier>DOI: 10.1016/j.finel.2010.02.006</identifier><identifier>CODEN: FEADEU</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Computational techniques ; Computer simulation ; Coupled analysis ; Exact sciences and technology ; Finite element method ; Finite elements ; Finite-element and galerkin methods ; Forming ; Fundamental areas of phenomenology (including applications) ; Indicators ; Inelasticity (thermoplasticity, viscoplasticity...) ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Metals. Metallurgy ; Model adaptivity ; Model error ; Other forming methods ; Physics ; Press forming of metal foils and wires ; Production techniques ; Sheet metal ; Sheet metal forming ; Shells ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>Finite elements in analysis and design, 2010-07, Vol.46 (7), p.585-600</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-9ec56b7289b50f38c1078690ae790470d469c1a4f03d57f3836248e867c56763</citedby><cites>FETCH-LOGICAL-c365t-9ec56b7289b50f38c1078690ae790470d469c1a4f03d57f3836248e867c56763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.finel.2010.02.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22695083$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ledentsov, Dmitry</creatorcontrib><creatorcontrib>Düster, Alexander</creatorcontrib><creatorcontrib>Volk, Wolfram</creatorcontrib><creatorcontrib>Wagner, Marcus</creatorcontrib><creatorcontrib>Heinle, Ingo</creatorcontrib><creatorcontrib>Rank, Ernst</creatorcontrib><title>Model adaptivity for industrial application of sheet metal forming simulation</title><title>Finite elements in analysis and design</title><description>In finite element simulation of sheet metal forming, shell elements are widely used. The limits of applicability of the shell elements are sometimes disregarded, which leads to an error in predictions of important values such as springback geometry. The underlying kinematic assumptions of the shell elements do not hold where the thickness of the metal sheet approaches the value of the radius of curvature. Complex three-dimensional material behavior effects cannot be represented precisely as the result of the simplified kinematics. Here we present a model adaptivity scheme based on a model error indicator. The model-adaptive technique presented in this paper aides to resolve only the critical areas of the structure with a three-dimensional discretization while keeping reasonable computational cost by utilizing shell elements for the rest of the structure. The model error indicator serves as a guide for subsequent automatic adaptive re-meshing of the work-piece followed by a model-adaptive finite element analysis. The accuracy of the approximation obtained by the model-adaptive technique coincides well with that of a more expensive solution obtained with solid elements only.</description><subject>Applied sciences</subject><subject>Computational techniques</subject><subject>Computer simulation</subject><subject>Coupled analysis</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Finite elements</subject><subject>Finite-element and galerkin methods</subject><subject>Forming</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Indicators</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Metals. Metallurgy</subject><subject>Model adaptivity</subject><subject>Model error</subject><subject>Other forming methods</subject><subject>Physics</subject><subject>Press forming of metal foils and wires</subject><subject>Production techniques</subject><subject>Sheet metal</subject><subject>Sheet metal forming</subject><subject>Shells</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0168-874X</issn><issn>1872-6925</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kDlPAzEQhS0EEuH4BTTbIKoNY3t9bEGBIi4pEQ0FnWW8s-BoL2wHiX-PSSJKqpHmfe-N5hFyQWFOgcrr9bz1A3ZzBnkDbA4gD8iMasVKWTNxSGaZ0qVW1esxOYlxDQCCyWpGVquxwa6wjZ2S__Lpu2jHUPih2cQUvM3KNHXe2eTHoRjbIn4gpqLHlKVM9n54L6LvN92WOCNHre0inu_nKXm5v3tZPJbL54enxe2ydFyKVNbohHxTTNdvAlquHQWlZQ0WVQ2VgqaStaO2aoE3QmWAS1Zp1FJln5L8lFztYqcwfm4wJtP76LDr7IDjJholuBKUA80k35EujDEGbM0UfG_Dt6Fgfqsza7OtzvxWZ4CZXF12Xe7zbXS2a4MdnI9_VsZkLUDzzN3sOMy_fnkMJjqPg8PGB3TJNKP_984PYMKFBw</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Ledentsov, Dmitry</creator><creator>Düster, Alexander</creator><creator>Volk, Wolfram</creator><creator>Wagner, Marcus</creator><creator>Heinle, Ingo</creator><creator>Rank, Ernst</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100701</creationdate><title>Model adaptivity for industrial application of sheet metal forming simulation</title><author>Ledentsov, Dmitry ; Düster, Alexander ; Volk, Wolfram ; Wagner, Marcus ; Heinle, Ingo ; Rank, Ernst</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-9ec56b7289b50f38c1078690ae790470d469c1a4f03d57f3836248e867c56763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Computational techniques</topic><topic>Computer simulation</topic><topic>Coupled analysis</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Finite elements</topic><topic>Finite-element and galerkin methods</topic><topic>Forming</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Indicators</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Metals. Metallurgy</topic><topic>Model adaptivity</topic><topic>Model error</topic><topic>Other forming methods</topic><topic>Physics</topic><topic>Press forming of metal foils and wires</topic><topic>Production techniques</topic><topic>Sheet metal</topic><topic>Sheet metal forming</topic><topic>Shells</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ledentsov, Dmitry</creatorcontrib><creatorcontrib>Düster, Alexander</creatorcontrib><creatorcontrib>Volk, Wolfram</creatorcontrib><creatorcontrib>Wagner, Marcus</creatorcontrib><creatorcontrib>Heinle, Ingo</creatorcontrib><creatorcontrib>Rank, Ernst</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Finite elements in analysis and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ledentsov, Dmitry</au><au>Düster, Alexander</au><au>Volk, Wolfram</au><au>Wagner, Marcus</au><au>Heinle, Ingo</au><au>Rank, Ernst</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model adaptivity for industrial application of sheet metal forming simulation</atitle><jtitle>Finite elements in analysis and design</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>46</volume><issue>7</issue><spage>585</spage><epage>600</epage><pages>585-600</pages><issn>0168-874X</issn><eissn>1872-6925</eissn><coden>FEADEU</coden><abstract>In finite element simulation of sheet metal forming, shell elements are widely used. The limits of applicability of the shell elements are sometimes disregarded, which leads to an error in predictions of important values such as springback geometry. The underlying kinematic assumptions of the shell elements do not hold where the thickness of the metal sheet approaches the value of the radius of curvature. Complex three-dimensional material behavior effects cannot be represented precisely as the result of the simplified kinematics. Here we present a model adaptivity scheme based on a model error indicator. The model-adaptive technique presented in this paper aides to resolve only the critical areas of the structure with a three-dimensional discretization while keeping reasonable computational cost by utilizing shell elements for the rest of the structure. The model error indicator serves as a guide for subsequent automatic adaptive re-meshing of the work-piece followed by a model-adaptive finite element analysis. The accuracy of the approximation obtained by the model-adaptive technique coincides well with that of a more expensive solution obtained with solid elements only.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.finel.2010.02.006</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-874X |
ispartof | Finite elements in analysis and design, 2010-07, Vol.46 (7), p.585-600 |
issn | 0168-874X 1872-6925 |
language | eng |
recordid | cdi_proquest_miscellaneous_753751301 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Computational techniques Computer simulation Coupled analysis Exact sciences and technology Finite element method Finite elements Finite-element and galerkin methods Forming Fundamental areas of phenomenology (including applications) Indicators Inelasticity (thermoplasticity, viscoplasticity...) Mathematical analysis Mathematical methods in physics Mathematical models Metals. Metallurgy Model adaptivity Model error Other forming methods Physics Press forming of metal foils and wires Production techniques Sheet metal Sheet metal forming Shells Solid mechanics Structural and continuum mechanics |
title | Model adaptivity for industrial application of sheet metal forming simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A35%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20adaptivity%20for%20industrial%20application%20of%20sheet%20metal%20forming%20simulation&rft.jtitle=Finite%20elements%20in%20analysis%20and%20design&rft.au=Ledentsov,%20Dmitry&rft.date=2010-07-01&rft.volume=46&rft.issue=7&rft.spage=585&rft.epage=600&rft.pages=585-600&rft.issn=0168-874X&rft.eissn=1872-6925&rft.coden=FEADEU&rft_id=info:doi/10.1016/j.finel.2010.02.006&rft_dat=%3Cproquest_cross%3E753751301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753751301&rft_id=info:pmid/&rft_els_id=S0168874X10000259&rfr_iscdi=true |