Model adaptivity for industrial application of sheet metal forming simulation

In finite element simulation of sheet metal forming, shell elements are widely used. The limits of applicability of the shell elements are sometimes disregarded, which leads to an error in predictions of important values such as springback geometry. The underlying kinematic assumptions of the shell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Finite elements in analysis and design 2010-07, Vol.46 (7), p.585-600
Hauptverfasser: Ledentsov, Dmitry, Düster, Alexander, Volk, Wolfram, Wagner, Marcus, Heinle, Ingo, Rank, Ernst
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 600
container_issue 7
container_start_page 585
container_title Finite elements in analysis and design
container_volume 46
creator Ledentsov, Dmitry
Düster, Alexander
Volk, Wolfram
Wagner, Marcus
Heinle, Ingo
Rank, Ernst
description In finite element simulation of sheet metal forming, shell elements are widely used. The limits of applicability of the shell elements are sometimes disregarded, which leads to an error in predictions of important values such as springback geometry. The underlying kinematic assumptions of the shell elements do not hold where the thickness of the metal sheet approaches the value of the radius of curvature. Complex three-dimensional material behavior effects cannot be represented precisely as the result of the simplified kinematics. Here we present a model adaptivity scheme based on a model error indicator. The model-adaptive technique presented in this paper aides to resolve only the critical areas of the structure with a three-dimensional discretization while keeping reasonable computational cost by utilizing shell elements for the rest of the structure. The model error indicator serves as a guide for subsequent automatic adaptive re-meshing of the work-piece followed by a model-adaptive finite element analysis. The accuracy of the approximation obtained by the model-adaptive technique coincides well with that of a more expensive solution obtained with solid elements only.
doi_str_mv 10.1016/j.finel.2010.02.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753751301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168874X10000259</els_id><sourcerecordid>753751301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-9ec56b7289b50f38c1078690ae790470d469c1a4f03d57f3836248e867c56763</originalsourceid><addsrcrecordid>eNp9kDlPAzEQhS0EEuH4BTTbIKoNY3t9bEGBIi4pEQ0FnWW8s-BoL2wHiX-PSSJKqpHmfe-N5hFyQWFOgcrr9bz1A3ZzBnkDbA4gD8iMasVKWTNxSGaZ0qVW1esxOYlxDQCCyWpGVquxwa6wjZ2S__Lpu2jHUPih2cQUvM3KNHXe2eTHoRjbIn4gpqLHlKVM9n54L6LvN92WOCNHre0inu_nKXm5v3tZPJbL54enxe2ydFyKVNbohHxTTNdvAlquHQWlZQ0WVQ2VgqaStaO2aoE3QmWAS1Zp1FJln5L8lFztYqcwfm4wJtP76LDr7IDjJholuBKUA80k35EujDEGbM0UfG_Dt6Fgfqsza7OtzvxWZ4CZXF12Xe7zbXS2a4MdnI9_VsZkLUDzzN3sOMy_fnkMJjqPg8PGB3TJNKP_984PYMKFBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753751301</pqid></control><display><type>article</type><title>Model adaptivity for industrial application of sheet metal forming simulation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ledentsov, Dmitry ; Düster, Alexander ; Volk, Wolfram ; Wagner, Marcus ; Heinle, Ingo ; Rank, Ernst</creator><creatorcontrib>Ledentsov, Dmitry ; Düster, Alexander ; Volk, Wolfram ; Wagner, Marcus ; Heinle, Ingo ; Rank, Ernst</creatorcontrib><description>In finite element simulation of sheet metal forming, shell elements are widely used. The limits of applicability of the shell elements are sometimes disregarded, which leads to an error in predictions of important values such as springback geometry. The underlying kinematic assumptions of the shell elements do not hold where the thickness of the metal sheet approaches the value of the radius of curvature. Complex three-dimensional material behavior effects cannot be represented precisely as the result of the simplified kinematics. Here we present a model adaptivity scheme based on a model error indicator. The model-adaptive technique presented in this paper aides to resolve only the critical areas of the structure with a three-dimensional discretization while keeping reasonable computational cost by utilizing shell elements for the rest of the structure. The model error indicator serves as a guide for subsequent automatic adaptive re-meshing of the work-piece followed by a model-adaptive finite element analysis. The accuracy of the approximation obtained by the model-adaptive technique coincides well with that of a more expensive solution obtained with solid elements only.</description><identifier>ISSN: 0168-874X</identifier><identifier>EISSN: 1872-6925</identifier><identifier>DOI: 10.1016/j.finel.2010.02.006</identifier><identifier>CODEN: FEADEU</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Computational techniques ; Computer simulation ; Coupled analysis ; Exact sciences and technology ; Finite element method ; Finite elements ; Finite-element and galerkin methods ; Forming ; Fundamental areas of phenomenology (including applications) ; Indicators ; Inelasticity (thermoplasticity, viscoplasticity...) ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Metals. Metallurgy ; Model adaptivity ; Model error ; Other forming methods ; Physics ; Press forming of metal foils and wires ; Production techniques ; Sheet metal ; Sheet metal forming ; Shells ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>Finite elements in analysis and design, 2010-07, Vol.46 (7), p.585-600</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-9ec56b7289b50f38c1078690ae790470d469c1a4f03d57f3836248e867c56763</citedby><cites>FETCH-LOGICAL-c365t-9ec56b7289b50f38c1078690ae790470d469c1a4f03d57f3836248e867c56763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.finel.2010.02.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22695083$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ledentsov, Dmitry</creatorcontrib><creatorcontrib>Düster, Alexander</creatorcontrib><creatorcontrib>Volk, Wolfram</creatorcontrib><creatorcontrib>Wagner, Marcus</creatorcontrib><creatorcontrib>Heinle, Ingo</creatorcontrib><creatorcontrib>Rank, Ernst</creatorcontrib><title>Model adaptivity for industrial application of sheet metal forming simulation</title><title>Finite elements in analysis and design</title><description>In finite element simulation of sheet metal forming, shell elements are widely used. The limits of applicability of the shell elements are sometimes disregarded, which leads to an error in predictions of important values such as springback geometry. The underlying kinematic assumptions of the shell elements do not hold where the thickness of the metal sheet approaches the value of the radius of curvature. Complex three-dimensional material behavior effects cannot be represented precisely as the result of the simplified kinematics. Here we present a model adaptivity scheme based on a model error indicator. The model-adaptive technique presented in this paper aides to resolve only the critical areas of the structure with a three-dimensional discretization while keeping reasonable computational cost by utilizing shell elements for the rest of the structure. The model error indicator serves as a guide for subsequent automatic adaptive re-meshing of the work-piece followed by a model-adaptive finite element analysis. The accuracy of the approximation obtained by the model-adaptive technique coincides well with that of a more expensive solution obtained with solid elements only.</description><subject>Applied sciences</subject><subject>Computational techniques</subject><subject>Computer simulation</subject><subject>Coupled analysis</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Finite elements</subject><subject>Finite-element and galerkin methods</subject><subject>Forming</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Indicators</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Metals. Metallurgy</subject><subject>Model adaptivity</subject><subject>Model error</subject><subject>Other forming methods</subject><subject>Physics</subject><subject>Press forming of metal foils and wires</subject><subject>Production techniques</subject><subject>Sheet metal</subject><subject>Sheet metal forming</subject><subject>Shells</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0168-874X</issn><issn>1872-6925</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kDlPAzEQhS0EEuH4BTTbIKoNY3t9bEGBIi4pEQ0FnWW8s-BoL2wHiX-PSSJKqpHmfe-N5hFyQWFOgcrr9bz1A3ZzBnkDbA4gD8iMasVKWTNxSGaZ0qVW1esxOYlxDQCCyWpGVquxwa6wjZ2S__Lpu2jHUPih2cQUvM3KNHXe2eTHoRjbIn4gpqLHlKVM9n54L6LvN92WOCNHre0inu_nKXm5v3tZPJbL54enxe2ydFyKVNbohHxTTNdvAlquHQWlZQ0WVQ2VgqaStaO2aoE3QmWAS1Zp1FJln5L8lFztYqcwfm4wJtP76LDr7IDjJholuBKUA80k35EujDEGbM0UfG_Dt6Fgfqsza7OtzvxWZ4CZXF12Xe7zbXS2a4MdnI9_VsZkLUDzzN3sOMy_fnkMJjqPg8PGB3TJNKP_984PYMKFBw</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Ledentsov, Dmitry</creator><creator>Düster, Alexander</creator><creator>Volk, Wolfram</creator><creator>Wagner, Marcus</creator><creator>Heinle, Ingo</creator><creator>Rank, Ernst</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100701</creationdate><title>Model adaptivity for industrial application of sheet metal forming simulation</title><author>Ledentsov, Dmitry ; Düster, Alexander ; Volk, Wolfram ; Wagner, Marcus ; Heinle, Ingo ; Rank, Ernst</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-9ec56b7289b50f38c1078690ae790470d469c1a4f03d57f3836248e867c56763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Computational techniques</topic><topic>Computer simulation</topic><topic>Coupled analysis</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Finite elements</topic><topic>Finite-element and galerkin methods</topic><topic>Forming</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Indicators</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Metals. Metallurgy</topic><topic>Model adaptivity</topic><topic>Model error</topic><topic>Other forming methods</topic><topic>Physics</topic><topic>Press forming of metal foils and wires</topic><topic>Production techniques</topic><topic>Sheet metal</topic><topic>Sheet metal forming</topic><topic>Shells</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ledentsov, Dmitry</creatorcontrib><creatorcontrib>Düster, Alexander</creatorcontrib><creatorcontrib>Volk, Wolfram</creatorcontrib><creatorcontrib>Wagner, Marcus</creatorcontrib><creatorcontrib>Heinle, Ingo</creatorcontrib><creatorcontrib>Rank, Ernst</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Finite elements in analysis and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ledentsov, Dmitry</au><au>Düster, Alexander</au><au>Volk, Wolfram</au><au>Wagner, Marcus</au><au>Heinle, Ingo</au><au>Rank, Ernst</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model adaptivity for industrial application of sheet metal forming simulation</atitle><jtitle>Finite elements in analysis and design</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>46</volume><issue>7</issue><spage>585</spage><epage>600</epage><pages>585-600</pages><issn>0168-874X</issn><eissn>1872-6925</eissn><coden>FEADEU</coden><abstract>In finite element simulation of sheet metal forming, shell elements are widely used. The limits of applicability of the shell elements are sometimes disregarded, which leads to an error in predictions of important values such as springback geometry. The underlying kinematic assumptions of the shell elements do not hold where the thickness of the metal sheet approaches the value of the radius of curvature. Complex three-dimensional material behavior effects cannot be represented precisely as the result of the simplified kinematics. Here we present a model adaptivity scheme based on a model error indicator. The model-adaptive technique presented in this paper aides to resolve only the critical areas of the structure with a three-dimensional discretization while keeping reasonable computational cost by utilizing shell elements for the rest of the structure. The model error indicator serves as a guide for subsequent automatic adaptive re-meshing of the work-piece followed by a model-adaptive finite element analysis. The accuracy of the approximation obtained by the model-adaptive technique coincides well with that of a more expensive solution obtained with solid elements only.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.finel.2010.02.006</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-874X
ispartof Finite elements in analysis and design, 2010-07, Vol.46 (7), p.585-600
issn 0168-874X
1872-6925
language eng
recordid cdi_proquest_miscellaneous_753751301
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Computational techniques
Computer simulation
Coupled analysis
Exact sciences and technology
Finite element method
Finite elements
Finite-element and galerkin methods
Forming
Fundamental areas of phenomenology (including applications)
Indicators
Inelasticity (thermoplasticity, viscoplasticity...)
Mathematical analysis
Mathematical methods in physics
Mathematical models
Metals. Metallurgy
Model adaptivity
Model error
Other forming methods
Physics
Press forming of metal foils and wires
Production techniques
Sheet metal
Sheet metal forming
Shells
Solid mechanics
Structural and continuum mechanics
title Model adaptivity for industrial application of sheet metal forming simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A35%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20adaptivity%20for%20industrial%20application%20of%20sheet%20metal%20forming%20simulation&rft.jtitle=Finite%20elements%20in%20analysis%20and%20design&rft.au=Ledentsov,%20Dmitry&rft.date=2010-07-01&rft.volume=46&rft.issue=7&rft.spage=585&rft.epage=600&rft.pages=585-600&rft.issn=0168-874X&rft.eissn=1872-6925&rft.coden=FEADEU&rft_id=info:doi/10.1016/j.finel.2010.02.006&rft_dat=%3Cproquest_cross%3E753751301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753751301&rft_id=info:pmid/&rft_els_id=S0168874X10000259&rfr_iscdi=true