Comparison of the Internal Energy Deposition of Direct Analysis in Real Time and Electrospray Ionization Time-of-Flight Mass Spectrometry
The internal energy (E int) distributions of a series of p-substituted benzylpyridinium ions generated by both direct analysis in real time (DART) and electrospray ionization (ESI) were compared using the “survival yield” method. DART mean E int values at gas flow rates of 2, 4, and 6 L min −1, and...
Gespeichert in:
Veröffentlicht in: | Journal of the American Society for Mass Spectrometry 2010-05, Vol.21 (5), p.855-863 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 863 |
---|---|
container_issue | 5 |
container_start_page | 855 |
container_title | Journal of the American Society for Mass Spectrometry |
container_volume | 21 |
creator | Harris, Glenn A. Hostetler, Dana M. Hampton, Christina Y. Fernández, Facundo M. |
description | The internal energy (E
int) distributions of a series of
p-substituted benzylpyridinium ions generated by both direct analysis in real time (DART) and electrospray ionization (ESI) were compared using the “survival yield” method. DART mean E
int values at gas flow rates of 2, 4, and 6 L min
−1, and at set temperatures of 175, 250, and 325
°C were in the 1.92–2.21 eV range. ESI mean E
int at identical temperatures in aqueous and 50% methanol solutions ranged between 1.71 and 1.96 eV, and 1.53 and 1.63 eV, respectively. Although the results indicated that ESI is a “softer” ionization technique than DART, there was overlap between the two techniques for the particular time-of-flight mass spectrometer used. As a whole, there was an increase in E
int with increasing reactive and drying gas temperatures for DART and ESI, respectively, indicating thermal ion activation. Three dimensional computational fluid dynamic simulations in combination with direct temperature measurements within the DART ionization region revealed complex inversely coupled fluid-thermal phenomena affecting ion E
int values during atmospheric transport. Primarily, that DART gas temperature in the ionization region was appreciably less than the set gas temperature of DART due to the set gas flow rates. There was no evidence of E
int deposition pathways from metastable-stimulated desorption, but fragmentation induced by high-energy helium metastables was observed at the highest gas flow rates and temperatures.
The internal energy distributions of a series of
p-substituted benzylpyridinium ions generated by both DART and ESI were compared using the “survival yield” method. |
doi_str_mv | 10.1016/j.jasms.2010.01.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753751068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044030510000516</els_id><sourcerecordid>733300508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-492951924a5953d3a6f03f74464766bc75c5a866d8b160e06e321bc5e31f75c63</originalsourceid><addsrcrecordid>eNqFkl2L1DAUhoso7rr6CwQJiHjVMWk-2lx4sczO6sCKoOt1yKSnsyltUpOOUP-B_9p0On7gxQoHEnKe9-TkvMmy5wSvCCbiTbtqdezjqsDpBJMU8kF2TqpS5oQU9GHaY8ZyTDE_y57E2GJMSizLx9lZklSESXqe_Vj7ftDBRu-Qb9B4B2jrRghOd2jjIOwndAWDj3a0C3FlA5gRXSZgijYi69AnSPCt7QFpV6NNl_LBxyHoCW29s9_1UTsDuW_y687u70b0QceIPg9HtocxTE-zR43uIjw7rRfZl-vN7fp9fvPx3XZ9eZMbTqsxZ7KQnMiCaS45rakWDaZNyZhgpRA7U3LDdSVEXe2IwIAF0ILsDAdKmpQT9CJ7vdQdgv96gDiq3kYDXacd-ENUJaclJ1hU_ycppRhzPJMv_yFbf5hnGBVJ3XJCOCsSRRfKpPHEAI0agu11mBTBarZUtepoqZotVZikkEn14lT7sOuh_q355WECXp0AHY3umqCdsfEPV5SSST4_nC1cssa6PYS_mrz3_reLDJIp32ySRWPBGaiPP0HV3t6r_wkGqdCi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1951511542</pqid></control><display><type>article</type><title>Comparison of the Internal Energy Deposition of Direct Analysis in Real Time and Electrospray Ionization Time-of-Flight Mass Spectrometry</title><source>Springer Nature - Complete Springer Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Harris, Glenn A. ; Hostetler, Dana M. ; Hampton, Christina Y. ; Fernández, Facundo M.</creator><creatorcontrib>Harris, Glenn A. ; Hostetler, Dana M. ; Hampton, Christina Y. ; Fernández, Facundo M.</creatorcontrib><description>The internal energy (E
int) distributions of a series of
p-substituted benzylpyridinium ions generated by both direct analysis in real time (DART) and electrospray ionization (ESI) were compared using the “survival yield” method. DART mean E
int values at gas flow rates of 2, 4, and 6 L min
−1, and at set temperatures of 175, 250, and 325
°C were in the 1.92–2.21 eV range. ESI mean E
int at identical temperatures in aqueous and 50% methanol solutions ranged between 1.71 and 1.96 eV, and 1.53 and 1.63 eV, respectively. Although the results indicated that ESI is a “softer” ionization technique than DART, there was overlap between the two techniques for the particular time-of-flight mass spectrometer used. As a whole, there was an increase in E
int with increasing reactive and drying gas temperatures for DART and ESI, respectively, indicating thermal ion activation. Three dimensional computational fluid dynamic simulations in combination with direct temperature measurements within the DART ionization region revealed complex inversely coupled fluid-thermal phenomena affecting ion E
int values during atmospheric transport. Primarily, that DART gas temperature in the ionization region was appreciably less than the set gas temperature of DART due to the set gas flow rates. There was no evidence of E
int deposition pathways from metastable-stimulated desorption, but fragmentation induced by high-energy helium metastables was observed at the highest gas flow rates and temperatures.
The internal energy distributions of a series of
p-substituted benzylpyridinium ions generated by both DART and ESI were compared using the “survival yield” method.</description><identifier>ISSN: 1044-0305</identifier><identifier>EISSN: 1879-1123</identifier><identifier>DOI: 10.1016/j.jasms.2010.01.019</identifier><identifier>PMID: 20181493</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Analytical Chemistry ; Bioinformatics ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Computer simulation ; Deposition ; Electrospraying ; Exact sciences and technology ; Gas flow ; Gas temperature ; Helium ; Internal energy ; Ionization ; Ions ; Mass spectrometry ; Methyl alcohol ; Organic Chemistry ; Proteomics ; Reactivity and mechanisms ; Real time ; Temperature</subject><ispartof>Journal of the American Society for Mass Spectrometry, 2010-05, Vol.21 (5), p.855-863</ispartof><rights>2010 American Society for Mass Spectrometry</rights><rights>American Society for Mass Spectrometry 2010</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.</rights><rights>Journal of The American Society for Mass Spectrometry is a copyright of Springer, 2010.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-492951924a5953d3a6f03f74464766bc75c5a866d8b160e06e321bc5e31f75c63</citedby><cites>FETCH-LOGICAL-c538t-492951924a5953d3a6f03f74464766bc75c5a866d8b160e06e321bc5e31f75c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1016/j.jasms.2010.01.019$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1016/j.jasms.2010.01.019$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22794956$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20181493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harris, Glenn A.</creatorcontrib><creatorcontrib>Hostetler, Dana M.</creatorcontrib><creatorcontrib>Hampton, Christina Y.</creatorcontrib><creatorcontrib>Fernández, Facundo M.</creatorcontrib><title>Comparison of the Internal Energy Deposition of Direct Analysis in Real Time and Electrospray Ionization Time-of-Flight Mass Spectrometry</title><title>Journal of the American Society for Mass Spectrometry</title><addtitle>J Am Soc Mass Spectrom</addtitle><addtitle>J Am Soc Mass Spectrom</addtitle><description>The internal energy (E
int) distributions of a series of
p-substituted benzylpyridinium ions generated by both direct analysis in real time (DART) and electrospray ionization (ESI) were compared using the “survival yield” method. DART mean E
int values at gas flow rates of 2, 4, and 6 L min
−1, and at set temperatures of 175, 250, and 325
°C were in the 1.92–2.21 eV range. ESI mean E
int at identical temperatures in aqueous and 50% methanol solutions ranged between 1.71 and 1.96 eV, and 1.53 and 1.63 eV, respectively. Although the results indicated that ESI is a “softer” ionization technique than DART, there was overlap between the two techniques for the particular time-of-flight mass spectrometer used. As a whole, there was an increase in E
int with increasing reactive and drying gas temperatures for DART and ESI, respectively, indicating thermal ion activation. Three dimensional computational fluid dynamic simulations in combination with direct temperature measurements within the DART ionization region revealed complex inversely coupled fluid-thermal phenomena affecting ion E
int values during atmospheric transport. Primarily, that DART gas temperature in the ionization region was appreciably less than the set gas temperature of DART due to the set gas flow rates. There was no evidence of E
int deposition pathways from metastable-stimulated desorption, but fragmentation induced by high-energy helium metastables was observed at the highest gas flow rates and temperatures.
The internal energy distributions of a series of
p-substituted benzylpyridinium ions generated by both DART and ESI were compared using the “survival yield” method.</description><subject>Analytical Chemistry</subject><subject>Bioinformatics</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Deposition</subject><subject>Electrospraying</subject><subject>Exact sciences and technology</subject><subject>Gas flow</subject><subject>Gas temperature</subject><subject>Helium</subject><subject>Internal energy</subject><subject>Ionization</subject><subject>Ions</subject><subject>Mass spectrometry</subject><subject>Methyl alcohol</subject><subject>Organic Chemistry</subject><subject>Proteomics</subject><subject>Reactivity and mechanisms</subject><subject>Real time</subject><subject>Temperature</subject><issn>1044-0305</issn><issn>1879-1123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkl2L1DAUhoso7rr6CwQJiHjVMWk-2lx4sczO6sCKoOt1yKSnsyltUpOOUP-B_9p0On7gxQoHEnKe9-TkvMmy5wSvCCbiTbtqdezjqsDpBJMU8kF2TqpS5oQU9GHaY8ZyTDE_y57E2GJMSizLx9lZklSESXqe_Vj7ftDBRu-Qb9B4B2jrRghOd2jjIOwndAWDj3a0C3FlA5gRXSZgijYi69AnSPCt7QFpV6NNl_LBxyHoCW29s9_1UTsDuW_y687u70b0QceIPg9HtocxTE-zR43uIjw7rRfZl-vN7fp9fvPx3XZ9eZMbTqsxZ7KQnMiCaS45rakWDaZNyZhgpRA7U3LDdSVEXe2IwIAF0ILsDAdKmpQT9CJ7vdQdgv96gDiq3kYDXacd-ENUJaclJ1hU_ycppRhzPJMv_yFbf5hnGBVJ3XJCOCsSRRfKpPHEAI0agu11mBTBarZUtepoqZotVZikkEn14lT7sOuh_q355WECXp0AHY3umqCdsfEPV5SSST4_nC1cssa6PYS_mrz3_reLDJIp32ySRWPBGaiPP0HV3t6r_wkGqdCi</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Harris, Glenn A.</creator><creator>Hostetler, Dana M.</creator><creator>Hampton, Christina Y.</creator><creator>Fernández, Facundo M.</creator><general>Elsevier Inc</general><general>Springer-Verlag</general><general>Elsevier</general><general>Springer Nature B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100501</creationdate><title>Comparison of the Internal Energy Deposition of Direct Analysis in Real Time and Electrospray Ionization Time-of-Flight Mass Spectrometry</title><author>Harris, Glenn A. ; Hostetler, Dana M. ; Hampton, Christina Y. ; Fernández, Facundo M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-492951924a5953d3a6f03f74464766bc75c5a866d8b160e06e321bc5e31f75c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical Chemistry</topic><topic>Bioinformatics</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Deposition</topic><topic>Electrospraying</topic><topic>Exact sciences and technology</topic><topic>Gas flow</topic><topic>Gas temperature</topic><topic>Helium</topic><topic>Internal energy</topic><topic>Ionization</topic><topic>Ions</topic><topic>Mass spectrometry</topic><topic>Methyl alcohol</topic><topic>Organic Chemistry</topic><topic>Proteomics</topic><topic>Reactivity and mechanisms</topic><topic>Real time</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harris, Glenn A.</creatorcontrib><creatorcontrib>Hostetler, Dana M.</creatorcontrib><creatorcontrib>Hampton, Christina Y.</creatorcontrib><creatorcontrib>Fernández, Facundo M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the American Society for Mass Spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harris, Glenn A.</au><au>Hostetler, Dana M.</au><au>Hampton, Christina Y.</au><au>Fernández, Facundo M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of the Internal Energy Deposition of Direct Analysis in Real Time and Electrospray Ionization Time-of-Flight Mass Spectrometry</atitle><jtitle>Journal of the American Society for Mass Spectrometry</jtitle><stitle>J Am Soc Mass Spectrom</stitle><addtitle>J Am Soc Mass Spectrom</addtitle><date>2010-05-01</date><risdate>2010</risdate><volume>21</volume><issue>5</issue><spage>855</spage><epage>863</epage><pages>855-863</pages><issn>1044-0305</issn><eissn>1879-1123</eissn><abstract>The internal energy (E
int) distributions of a series of
p-substituted benzylpyridinium ions generated by both direct analysis in real time (DART) and electrospray ionization (ESI) were compared using the “survival yield” method. DART mean E
int values at gas flow rates of 2, 4, and 6 L min
−1, and at set temperatures of 175, 250, and 325
°C were in the 1.92–2.21 eV range. ESI mean E
int at identical temperatures in aqueous and 50% methanol solutions ranged between 1.71 and 1.96 eV, and 1.53 and 1.63 eV, respectively. Although the results indicated that ESI is a “softer” ionization technique than DART, there was overlap between the two techniques for the particular time-of-flight mass spectrometer used. As a whole, there was an increase in E
int with increasing reactive and drying gas temperatures for DART and ESI, respectively, indicating thermal ion activation. Three dimensional computational fluid dynamic simulations in combination with direct temperature measurements within the DART ionization region revealed complex inversely coupled fluid-thermal phenomena affecting ion E
int values during atmospheric transport. Primarily, that DART gas temperature in the ionization region was appreciably less than the set gas temperature of DART due to the set gas flow rates. There was no evidence of E
int deposition pathways from metastable-stimulated desorption, but fragmentation induced by high-energy helium metastables was observed at the highest gas flow rates and temperatures.
The internal energy distributions of a series of
p-substituted benzylpyridinium ions generated by both DART and ESI were compared using the “survival yield” method.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><pmid>20181493</pmid><doi>10.1016/j.jasms.2010.01.019</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1044-0305 |
ispartof | Journal of the American Society for Mass Spectrometry, 2010-05, Vol.21 (5), p.855-863 |
issn | 1044-0305 1879-1123 |
language | eng |
recordid | cdi_proquest_miscellaneous_753751068 |
source | Springer Nature - Complete Springer Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Analytical Chemistry Bioinformatics Biotechnology Chemistry Chemistry and Materials Science Computer simulation Deposition Electrospraying Exact sciences and technology Gas flow Gas temperature Helium Internal energy Ionization Ions Mass spectrometry Methyl alcohol Organic Chemistry Proteomics Reactivity and mechanisms Real time Temperature |
title | Comparison of the Internal Energy Deposition of Direct Analysis in Real Time and Electrospray Ionization Time-of-Flight Mass Spectrometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A18%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20the%20Internal%20Energy%20Deposition%20of%20Direct%20Analysis%20in%20Real%20Time%20and%20Electrospray%20Ionization%20Time-of-Flight%20Mass%20Spectrometry&rft.jtitle=Journal%20of%20the%20American%20Society%20for%20Mass%20Spectrometry&rft.au=Harris,%20Glenn%20A.&rft.date=2010-05-01&rft.volume=21&rft.issue=5&rft.spage=855&rft.epage=863&rft.pages=855-863&rft.issn=1044-0305&rft.eissn=1879-1123&rft_id=info:doi/10.1016/j.jasms.2010.01.019&rft_dat=%3Cproquest_cross%3E733300508%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1951511542&rft_id=info:pmid/20181493&rft_els_id=S1044030510000516&rfr_iscdi=true |