The Effectiveness of Methods for Analyzing Multivariate Factorial Data

A Monte Carlo simulation was used to examine the effectiveness of univariate analysis of variance (ANOVA), multivariate analysis of variance (MANOVA), and multiple indicator structural equation (MISE) modeling to analyze data from multivariate factorial designs. The MISE method yielded downwardly bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Organizational research methods 2002-07, Vol.5 (3), p.255-274
Hauptverfasser: Mcdonald, Robert A., Seifert, Charles F., Lorenzet, Steven J., Givens, Susan, Jaccard, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 274
container_issue 3
container_start_page 255
container_title Organizational research methods
container_volume 5
creator Mcdonald, Robert A.
Seifert, Charles F.
Lorenzet, Steven J.
Givens, Susan
Jaccard, James
description A Monte Carlo simulation was used to examine the effectiveness of univariate analysis of variance (ANOVA), multivariate analysis of variance (MANOVA), and multiple indicator structural equation (MISE) modeling to analyze data from multivariate factorial designs. The MISE method yielded downwardly biased standard errors for the univariate parameter estimates in the small sample size conditions. In the large sample size data conditions, the MISE method outperformed MANOVA and ANOVA when the covariate accounted for variation in the dependent variable and variables were unreliable. With multivariate statistical tests, MANOVA outperformed the MISE method in the Type I error conditions and the MISE method outperformed MANOVA in the Type II error conditions. The Bonferroni methods were overly conservative in controlling Type I error rates for univariate tests, but a modified Bonferroni method had higher statistical power than the Bonferroni method. Both the Bonferroni and modified methods adequately controlled multivariate Type I error rates.
doi_str_mv 10.1177/1094428102005003004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753749962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1094428102005003004</sage_id><sourcerecordid>753749962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-6ad689b191f60a89a45eafd085090045a25ef242d8bb277bdaf834bda39d65e33</originalsourceid><addsrcrecordid>eNp9kD9PwzAUxC0EEqXwCVi8MQWe_yXxWJUGkFqxlDl6Sew2VRoXO0Eqnx5XZURMd8PvTu8dIfcMHhnLsicGWkqeM-AACkAAyAsyYUrxJJNcXUYfieSEXJObEHYATHClJ6RYbw1dWGvqof0yvQmBOktXZti6JlDrPJ312B2_235DV2MXIfQtDoYWWA8u2o4-44C35MpiF8zdr07JR7FYz1-T5fvL23y2TGrB-ZCk2KS5rphmNgXMNUpl0DaQK9DxZoVcGcslb_Kq4llWNWhzIaMI3aTKCDElD-feg3efowlDuW9DbboOe-PGUGZKZFLrlEdSnMnauxC8seXBt3v0x5JBeRqt_GO0mIJzKuDGlDs3-vh9-DfyA3vHa_4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753749962</pqid></control><display><type>article</type><title>The Effectiveness of Methods for Analyzing Multivariate Factorial Data</title><source>SAGE Complete A-Z List</source><creator>Mcdonald, Robert A. ; Seifert, Charles F. ; Lorenzet, Steven J. ; Givens, Susan ; Jaccard, James</creator><creatorcontrib>Mcdonald, Robert A. ; Seifert, Charles F. ; Lorenzet, Steven J. ; Givens, Susan ; Jaccard, James</creatorcontrib><description>A Monte Carlo simulation was used to examine the effectiveness of univariate analysis of variance (ANOVA), multivariate analysis of variance (MANOVA), and multiple indicator structural equation (MISE) modeling to analyze data from multivariate factorial designs. The MISE method yielded downwardly biased standard errors for the univariate parameter estimates in the small sample size conditions. In the large sample size data conditions, the MISE method outperformed MANOVA and ANOVA when the covariate accounted for variation in the dependent variable and variables were unreliable. With multivariate statistical tests, MANOVA outperformed the MISE method in the Type I error conditions and the MISE method outperformed MANOVA in the Type II error conditions. The Bonferroni methods were overly conservative in controlling Type I error rates for univariate tests, but a modified Bonferroni method had higher statistical power than the Bonferroni method. Both the Bonferroni and modified methods adequately controlled multivariate Type I error rates.</description><identifier>ISSN: 1094-4281</identifier><identifier>EISSN: 1552-7425</identifier><identifier>DOI: 10.1177/1094428102005003004</identifier><language>eng</language><publisher>SAGE Publications</publisher><subject>Analysis of variance ; Computer simulation ; Errors ; Mathematical models ; Monte Carlo methods ; Samples ; Statistical analysis ; Statistical methods</subject><ispartof>Organizational research methods, 2002-07, Vol.5 (3), p.255-274</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-6ad689b191f60a89a45eafd085090045a25ef242d8bb277bdaf834bda39d65e33</citedby><cites>FETCH-LOGICAL-c322t-6ad689b191f60a89a45eafd085090045a25ef242d8bb277bdaf834bda39d65e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1094428102005003004$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1094428102005003004$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Mcdonald, Robert A.</creatorcontrib><creatorcontrib>Seifert, Charles F.</creatorcontrib><creatorcontrib>Lorenzet, Steven J.</creatorcontrib><creatorcontrib>Givens, Susan</creatorcontrib><creatorcontrib>Jaccard, James</creatorcontrib><title>The Effectiveness of Methods for Analyzing Multivariate Factorial Data</title><title>Organizational research methods</title><description>A Monte Carlo simulation was used to examine the effectiveness of univariate analysis of variance (ANOVA), multivariate analysis of variance (MANOVA), and multiple indicator structural equation (MISE) modeling to analyze data from multivariate factorial designs. The MISE method yielded downwardly biased standard errors for the univariate parameter estimates in the small sample size conditions. In the large sample size data conditions, the MISE method outperformed MANOVA and ANOVA when the covariate accounted for variation in the dependent variable and variables were unreliable. With multivariate statistical tests, MANOVA outperformed the MISE method in the Type I error conditions and the MISE method outperformed MANOVA in the Type II error conditions. The Bonferroni methods were overly conservative in controlling Type I error rates for univariate tests, but a modified Bonferroni method had higher statistical power than the Bonferroni method. Both the Bonferroni and modified methods adequately controlled multivariate Type I error rates.</description><subject>Analysis of variance</subject><subject>Computer simulation</subject><subject>Errors</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Samples</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>1094-4281</issn><issn>1552-7425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAUxC0EEqXwCVi8MQWe_yXxWJUGkFqxlDl6Sew2VRoXO0Eqnx5XZURMd8PvTu8dIfcMHhnLsicGWkqeM-AACkAAyAsyYUrxJJNcXUYfieSEXJObEHYATHClJ6RYbw1dWGvqof0yvQmBOktXZti6JlDrPJ312B2_235DV2MXIfQtDoYWWA8u2o4-44C35MpiF8zdr07JR7FYz1-T5fvL23y2TGrB-ZCk2KS5rphmNgXMNUpl0DaQK9DxZoVcGcslb_Kq4llWNWhzIaMI3aTKCDElD-feg3efowlDuW9DbboOe-PGUGZKZFLrlEdSnMnauxC8seXBt3v0x5JBeRqt_GO0mIJzKuDGlDs3-vh9-DfyA3vHa_4</recordid><startdate>20020701</startdate><enddate>20020701</enddate><creator>Mcdonald, Robert A.</creator><creator>Seifert, Charles F.</creator><creator>Lorenzet, Steven J.</creator><creator>Givens, Susan</creator><creator>Jaccard, James</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20020701</creationdate><title>The Effectiveness of Methods for Analyzing Multivariate Factorial Data</title><author>Mcdonald, Robert A. ; Seifert, Charles F. ; Lorenzet, Steven J. ; Givens, Susan ; Jaccard, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-6ad689b191f60a89a45eafd085090045a25ef242d8bb277bdaf834bda39d65e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Analysis of variance</topic><topic>Computer simulation</topic><topic>Errors</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Samples</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mcdonald, Robert A.</creatorcontrib><creatorcontrib>Seifert, Charles F.</creatorcontrib><creatorcontrib>Lorenzet, Steven J.</creatorcontrib><creatorcontrib>Givens, Susan</creatorcontrib><creatorcontrib>Jaccard, James</creatorcontrib><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Organizational research methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mcdonald, Robert A.</au><au>Seifert, Charles F.</au><au>Lorenzet, Steven J.</au><au>Givens, Susan</au><au>Jaccard, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effectiveness of Methods for Analyzing Multivariate Factorial Data</atitle><jtitle>Organizational research methods</jtitle><date>2002-07-01</date><risdate>2002</risdate><volume>5</volume><issue>3</issue><spage>255</spage><epage>274</epage><pages>255-274</pages><issn>1094-4281</issn><eissn>1552-7425</eissn><abstract>A Monte Carlo simulation was used to examine the effectiveness of univariate analysis of variance (ANOVA), multivariate analysis of variance (MANOVA), and multiple indicator structural equation (MISE) modeling to analyze data from multivariate factorial designs. The MISE method yielded downwardly biased standard errors for the univariate parameter estimates in the small sample size conditions. In the large sample size data conditions, the MISE method outperformed MANOVA and ANOVA when the covariate accounted for variation in the dependent variable and variables were unreliable. With multivariate statistical tests, MANOVA outperformed the MISE method in the Type I error conditions and the MISE method outperformed MANOVA in the Type II error conditions. The Bonferroni methods were overly conservative in controlling Type I error rates for univariate tests, but a modified Bonferroni method had higher statistical power than the Bonferroni method. Both the Bonferroni and modified methods adequately controlled multivariate Type I error rates.</abstract><pub>SAGE Publications</pub><doi>10.1177/1094428102005003004</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1094-4281
ispartof Organizational research methods, 2002-07, Vol.5 (3), p.255-274
issn 1094-4281
1552-7425
language eng
recordid cdi_proquest_miscellaneous_753749962
source SAGE Complete A-Z List
subjects Analysis of variance
Computer simulation
Errors
Mathematical models
Monte Carlo methods
Samples
Statistical analysis
Statistical methods
title The Effectiveness of Methods for Analyzing Multivariate Factorial Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effectiveness%20of%20Methods%20for%20Analyzing%20Multivariate%20Factorial%20Data&rft.jtitle=Organizational%20research%20methods&rft.au=Mcdonald,%20Robert%20A.&rft.date=2002-07-01&rft.volume=5&rft.issue=3&rft.spage=255&rft.epage=274&rft.pages=255-274&rft.issn=1094-4281&rft.eissn=1552-7425&rft_id=info:doi/10.1177/1094428102005003004&rft_dat=%3Cproquest_cross%3E753749962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753749962&rft_id=info:pmid/&rft_sage_id=10.1177_1094428102005003004&rfr_iscdi=true