Local ISS of large-scale interconnections and estimates for stability regions

We consider interconnections of locally input-to-state stable (LISS) systems. The class of LISS systems is quite large, in particular it contains input-to-state stable (ISS) and integral input-to-state stable (iISS) systems. Local small-gain conditions both for LISS trajectory and Lyapunov formulati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Systems & control letters 2010-03, Vol.59 (3), p.241-247
Hauptverfasser: Dashkovskiy, Sergey N., Rüffer, Björn S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 247
container_issue 3
container_start_page 241
container_title Systems & control letters
container_volume 59
creator Dashkovskiy, Sergey N.
Rüffer, Björn S.
description We consider interconnections of locally input-to-state stable (LISS) systems. The class of LISS systems is quite large, in particular it contains input-to-state stable (ISS) and integral input-to-state stable (iISS) systems. Local small-gain conditions both for LISS trajectory and Lyapunov formulations guaranteeing LISS of the composite system are provided in this paper. Notably, estimates for the resulting stability region of the composite system are also given. This in particular provides an advantage over the linearization approach, as will be discussed.
doi_str_mv 10.1016/j.sysconle.2010.02.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753745613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167691110000228</els_id><sourcerecordid>753745613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-84cea2df5c5064a92b40594b5f70ee0ea6142baa7da3cbf942b93362c569262c3</originalsourceid><addsrcrecordid>eNqFkMlOwzAQQC0EEqXwC8gXxClhvMRpbqCKpVIRh8LZcpxJ5SqNi50i9e9xVODKaTSjN9sj5JpBzoCpu00eD9H6vsOcQyoCzwHYCZmwWcmzsirUKZkksMxUxdg5uYhxAwAchJiQ16W3pqOL1Yr6lnYmrDGLqYLU9QOGNLZHOzjfR2r6hmIc3NYMGGnrA42DqV3nhgMNuB6ZS3LWmi7i1U-cko-nx_f5S7Z8e17MH5aZlRKGbCYtGt60hS1ASVPxWkJRybpoS0AENIpJXhtTNkbYuq1SUgmhuC1UxVMQU3J7nLsL_nOfjtJbFy12nenR76MuC1HKQjGRSHUkbfAxBmz1LqQPwkEz0KM-vdG_-vSoTwPXSV9qvPlZYUYfbTC9dfGvm3MlFGMycfdHDtO_Xw6DjtZhb7FxIZnTjXf_rfoGowKJ5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753745613</pqid></control><display><type>article</type><title>Local ISS of large-scale interconnections and estimates for stability regions</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Dashkovskiy, Sergey N. ; Rüffer, Björn S.</creator><creatorcontrib>Dashkovskiy, Sergey N. ; Rüffer, Björn S.</creatorcontrib><description>We consider interconnections of locally input-to-state stable (LISS) systems. The class of LISS systems is quite large, in particular it contains input-to-state stable (ISS) and integral input-to-state stable (iISS) systems. Local small-gain conditions both for LISS trajectory and Lyapunov formulations guaranteeing LISS of the composite system are provided in this paper. Notably, estimates for the resulting stability region of the composite system are also given. This in particular provides an advantage over the linearization approach, as will be discussed.</description><identifier>ISSN: 0167-6911</identifier><identifier>EISSN: 1872-7956</identifier><identifier>DOI: 10.1016/j.sysconle.2010.02.001</identifier><identifier>CODEN: SCLEDC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control system analysis ; Control systems ; Control theory. Systems ; Estimates ; Exact sciences and technology ; Formulations ; Integrals ; Interconnected systems ; Interconnections ; International Space Station ; Large-scale system ; Local input-to-state stability ; Lyapunov function ; Small-gain condition ; Stability ; Trajectories</subject><ispartof>Systems &amp; control letters, 2010-03, Vol.59 (3), p.241-247</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-84cea2df5c5064a92b40594b5f70ee0ea6142baa7da3cbf942b93362c569262c3</citedby><cites>FETCH-LOGICAL-c440t-84cea2df5c5064a92b40594b5f70ee0ea6142baa7da3cbf942b93362c569262c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sysconle.2010.02.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22636114$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dashkovskiy, Sergey N.</creatorcontrib><creatorcontrib>Rüffer, Björn S.</creatorcontrib><title>Local ISS of large-scale interconnections and estimates for stability regions</title><title>Systems &amp; control letters</title><description>We consider interconnections of locally input-to-state stable (LISS) systems. The class of LISS systems is quite large, in particular it contains input-to-state stable (ISS) and integral input-to-state stable (iISS) systems. Local small-gain conditions both for LISS trajectory and Lyapunov formulations guaranteeing LISS of the composite system are provided in this paper. Notably, estimates for the resulting stability region of the composite system are also given. This in particular provides an advantage over the linearization approach, as will be discussed.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Formulations</subject><subject>Integrals</subject><subject>Interconnected systems</subject><subject>Interconnections</subject><subject>International Space Station</subject><subject>Large-scale system</subject><subject>Local input-to-state stability</subject><subject>Lyapunov function</subject><subject>Small-gain condition</subject><subject>Stability</subject><subject>Trajectories</subject><issn>0167-6911</issn><issn>1872-7956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkMlOwzAQQC0EEqXwC8gXxClhvMRpbqCKpVIRh8LZcpxJ5SqNi50i9e9xVODKaTSjN9sj5JpBzoCpu00eD9H6vsOcQyoCzwHYCZmwWcmzsirUKZkksMxUxdg5uYhxAwAchJiQ16W3pqOL1Yr6lnYmrDGLqYLU9QOGNLZHOzjfR2r6hmIc3NYMGGnrA42DqV3nhgMNuB6ZS3LWmi7i1U-cko-nx_f5S7Z8e17MH5aZlRKGbCYtGt60hS1ASVPxWkJRybpoS0AENIpJXhtTNkbYuq1SUgmhuC1UxVMQU3J7nLsL_nOfjtJbFy12nenR76MuC1HKQjGRSHUkbfAxBmz1LqQPwkEz0KM-vdG_-vSoTwPXSV9qvPlZYUYfbTC9dfGvm3MlFGMycfdHDtO_Xw6DjtZhb7FxIZnTjXf_rfoGowKJ5w</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Dashkovskiy, Sergey N.</creator><creator>Rüffer, Björn S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100301</creationdate><title>Local ISS of large-scale interconnections and estimates for stability regions</title><author>Dashkovskiy, Sergey N. ; Rüffer, Björn S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-84cea2df5c5064a92b40594b5f70ee0ea6142baa7da3cbf942b93362c569262c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Formulations</topic><topic>Integrals</topic><topic>Interconnected systems</topic><topic>Interconnections</topic><topic>International Space Station</topic><topic>Large-scale system</topic><topic>Local input-to-state stability</topic><topic>Lyapunov function</topic><topic>Small-gain condition</topic><topic>Stability</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dashkovskiy, Sergey N.</creatorcontrib><creatorcontrib>Rüffer, Björn S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Systems &amp; control letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dashkovskiy, Sergey N.</au><au>Rüffer, Björn S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local ISS of large-scale interconnections and estimates for stability regions</atitle><jtitle>Systems &amp; control letters</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>59</volume><issue>3</issue><spage>241</spage><epage>247</epage><pages>241-247</pages><issn>0167-6911</issn><eissn>1872-7956</eissn><coden>SCLEDC</coden><abstract>We consider interconnections of locally input-to-state stable (LISS) systems. The class of LISS systems is quite large, in particular it contains input-to-state stable (ISS) and integral input-to-state stable (iISS) systems. Local small-gain conditions both for LISS trajectory and Lyapunov formulations guaranteeing LISS of the composite system are provided in this paper. Notably, estimates for the resulting stability region of the composite system are also given. This in particular provides an advantage over the linearization approach, as will be discussed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sysconle.2010.02.001</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6911
ispartof Systems & control letters, 2010-03, Vol.59 (3), p.241-247
issn 0167-6911
1872-7956
language eng
recordid cdi_proquest_miscellaneous_753745613
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Computer science
control theory
systems
Control system analysis
Control systems
Control theory. Systems
Estimates
Exact sciences and technology
Formulations
Integrals
Interconnected systems
Interconnections
International Space Station
Large-scale system
Local input-to-state stability
Lyapunov function
Small-gain condition
Stability
Trajectories
title Local ISS of large-scale interconnections and estimates for stability regions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20ISS%20of%20large-scale%20interconnections%20and%20estimates%20for%20stability%20regions&rft.jtitle=Systems%20&%20control%20letters&rft.au=Dashkovskiy,%20Sergey%20N.&rft.date=2010-03-01&rft.volume=59&rft.issue=3&rft.spage=241&rft.epage=247&rft.pages=241-247&rft.issn=0167-6911&rft.eissn=1872-7956&rft.coden=SCLEDC&rft_id=info:doi/10.1016/j.sysconle.2010.02.001&rft_dat=%3Cproquest_cross%3E753745613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753745613&rft_id=info:pmid/&rft_els_id=S0167691110000228&rfr_iscdi=true