Local ISS of large-scale interconnections and estimates for stability regions
We consider interconnections of locally input-to-state stable (LISS) systems. The class of LISS systems is quite large, in particular it contains input-to-state stable (ISS) and integral input-to-state stable (iISS) systems. Local small-gain conditions both for LISS trajectory and Lyapunov formulati...
Gespeichert in:
Veröffentlicht in: | Systems & control letters 2010-03, Vol.59 (3), p.241-247 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 247 |
---|---|
container_issue | 3 |
container_start_page | 241 |
container_title | Systems & control letters |
container_volume | 59 |
creator | Dashkovskiy, Sergey N. Rüffer, Björn S. |
description | We consider interconnections of locally input-to-state stable (LISS) systems. The class of LISS systems is quite large, in particular it contains input-to-state stable (ISS) and integral input-to-state stable (iISS) systems.
Local small-gain conditions both for LISS trajectory and Lyapunov formulations guaranteeing LISS of the composite system are provided in this paper. Notably, estimates for the resulting stability region of the composite system are also given. This in particular provides an advantage over the linearization approach, as will be discussed. |
doi_str_mv | 10.1016/j.sysconle.2010.02.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753745613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167691110000228</els_id><sourcerecordid>753745613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-84cea2df5c5064a92b40594b5f70ee0ea6142baa7da3cbf942b93362c569262c3</originalsourceid><addsrcrecordid>eNqFkMlOwzAQQC0EEqXwC8gXxClhvMRpbqCKpVIRh8LZcpxJ5SqNi50i9e9xVODKaTSjN9sj5JpBzoCpu00eD9H6vsOcQyoCzwHYCZmwWcmzsirUKZkksMxUxdg5uYhxAwAchJiQ16W3pqOL1Yr6lnYmrDGLqYLU9QOGNLZHOzjfR2r6hmIc3NYMGGnrA42DqV3nhgMNuB6ZS3LWmi7i1U-cko-nx_f5S7Z8e17MH5aZlRKGbCYtGt60hS1ASVPxWkJRybpoS0AENIpJXhtTNkbYuq1SUgmhuC1UxVMQU3J7nLsL_nOfjtJbFy12nenR76MuC1HKQjGRSHUkbfAxBmz1LqQPwkEz0KM-vdG_-vSoTwPXSV9qvPlZYUYfbTC9dfGvm3MlFGMycfdHDtO_Xw6DjtZhb7FxIZnTjXf_rfoGowKJ5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753745613</pqid></control><display><type>article</type><title>Local ISS of large-scale interconnections and estimates for stability regions</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Dashkovskiy, Sergey N. ; Rüffer, Björn S.</creator><creatorcontrib>Dashkovskiy, Sergey N. ; Rüffer, Björn S.</creatorcontrib><description>We consider interconnections of locally input-to-state stable (LISS) systems. The class of LISS systems is quite large, in particular it contains input-to-state stable (ISS) and integral input-to-state stable (iISS) systems.
Local small-gain conditions both for LISS trajectory and Lyapunov formulations guaranteeing LISS of the composite system are provided in this paper. Notably, estimates for the resulting stability region of the composite system are also given. This in particular provides an advantage over the linearization approach, as will be discussed.</description><identifier>ISSN: 0167-6911</identifier><identifier>EISSN: 1872-7956</identifier><identifier>DOI: 10.1016/j.sysconle.2010.02.001</identifier><identifier>CODEN: SCLEDC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control system analysis ; Control systems ; Control theory. Systems ; Estimates ; Exact sciences and technology ; Formulations ; Integrals ; Interconnected systems ; Interconnections ; International Space Station ; Large-scale system ; Local input-to-state stability ; Lyapunov function ; Small-gain condition ; Stability ; Trajectories</subject><ispartof>Systems & control letters, 2010-03, Vol.59 (3), p.241-247</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-84cea2df5c5064a92b40594b5f70ee0ea6142baa7da3cbf942b93362c569262c3</citedby><cites>FETCH-LOGICAL-c440t-84cea2df5c5064a92b40594b5f70ee0ea6142baa7da3cbf942b93362c569262c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sysconle.2010.02.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22636114$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dashkovskiy, Sergey N.</creatorcontrib><creatorcontrib>Rüffer, Björn S.</creatorcontrib><title>Local ISS of large-scale interconnections and estimates for stability regions</title><title>Systems & control letters</title><description>We consider interconnections of locally input-to-state stable (LISS) systems. The class of LISS systems is quite large, in particular it contains input-to-state stable (ISS) and integral input-to-state stable (iISS) systems.
Local small-gain conditions both for LISS trajectory and Lyapunov formulations guaranteeing LISS of the composite system are provided in this paper. Notably, estimates for the resulting stability region of the composite system are also given. This in particular provides an advantage over the linearization approach, as will be discussed.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Formulations</subject><subject>Integrals</subject><subject>Interconnected systems</subject><subject>Interconnections</subject><subject>International Space Station</subject><subject>Large-scale system</subject><subject>Local input-to-state stability</subject><subject>Lyapunov function</subject><subject>Small-gain condition</subject><subject>Stability</subject><subject>Trajectories</subject><issn>0167-6911</issn><issn>1872-7956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkMlOwzAQQC0EEqXwC8gXxClhvMRpbqCKpVIRh8LZcpxJ5SqNi50i9e9xVODKaTSjN9sj5JpBzoCpu00eD9H6vsOcQyoCzwHYCZmwWcmzsirUKZkksMxUxdg5uYhxAwAchJiQ16W3pqOL1Yr6lnYmrDGLqYLU9QOGNLZHOzjfR2r6hmIc3NYMGGnrA42DqV3nhgMNuB6ZS3LWmi7i1U-cko-nx_f5S7Z8e17MH5aZlRKGbCYtGt60hS1ASVPxWkJRybpoS0AENIpJXhtTNkbYuq1SUgmhuC1UxVMQU3J7nLsL_nOfjtJbFy12nenR76MuC1HKQjGRSHUkbfAxBmz1LqQPwkEz0KM-vdG_-vSoTwPXSV9qvPlZYUYfbTC9dfGvm3MlFGMycfdHDtO_Xw6DjtZhb7FxIZnTjXf_rfoGowKJ5w</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Dashkovskiy, Sergey N.</creator><creator>Rüffer, Björn S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100301</creationdate><title>Local ISS of large-scale interconnections and estimates for stability regions</title><author>Dashkovskiy, Sergey N. ; Rüffer, Björn S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-84cea2df5c5064a92b40594b5f70ee0ea6142baa7da3cbf942b93362c569262c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Formulations</topic><topic>Integrals</topic><topic>Interconnected systems</topic><topic>Interconnections</topic><topic>International Space Station</topic><topic>Large-scale system</topic><topic>Local input-to-state stability</topic><topic>Lyapunov function</topic><topic>Small-gain condition</topic><topic>Stability</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dashkovskiy, Sergey N.</creatorcontrib><creatorcontrib>Rüffer, Björn S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Systems & control letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dashkovskiy, Sergey N.</au><au>Rüffer, Björn S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local ISS of large-scale interconnections and estimates for stability regions</atitle><jtitle>Systems & control letters</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>59</volume><issue>3</issue><spage>241</spage><epage>247</epage><pages>241-247</pages><issn>0167-6911</issn><eissn>1872-7956</eissn><coden>SCLEDC</coden><abstract>We consider interconnections of locally input-to-state stable (LISS) systems. The class of LISS systems is quite large, in particular it contains input-to-state stable (ISS) and integral input-to-state stable (iISS) systems.
Local small-gain conditions both for LISS trajectory and Lyapunov formulations guaranteeing LISS of the composite system are provided in this paper. Notably, estimates for the resulting stability region of the composite system are also given. This in particular provides an advantage over the linearization approach, as will be discussed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sysconle.2010.02.001</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6911 |
ispartof | Systems & control letters, 2010-03, Vol.59 (3), p.241-247 |
issn | 0167-6911 1872-7956 |
language | eng |
recordid | cdi_proquest_miscellaneous_753745613 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Computer science control theory systems Control system analysis Control systems Control theory. Systems Estimates Exact sciences and technology Formulations Integrals Interconnected systems Interconnections International Space Station Large-scale system Local input-to-state stability Lyapunov function Small-gain condition Stability Trajectories |
title | Local ISS of large-scale interconnections and estimates for stability regions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20ISS%20of%20large-scale%20interconnections%20and%20estimates%20for%20stability%20regions&rft.jtitle=Systems%20&%20control%20letters&rft.au=Dashkovskiy,%20Sergey%20N.&rft.date=2010-03-01&rft.volume=59&rft.issue=3&rft.spage=241&rft.epage=247&rft.pages=241-247&rft.issn=0167-6911&rft.eissn=1872-7956&rft.coden=SCLEDC&rft_id=info:doi/10.1016/j.sysconle.2010.02.001&rft_dat=%3Cproquest_cross%3E753745613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753745613&rft_id=info:pmid/&rft_els_id=S0167691110000228&rfr_iscdi=true |