A global transient, one-dimensional, two-phase model for direct methanol fuel cells (DMFCs) – Part II: Analysis of the time-dependent thermal behavior of DMFCs
A transient-thermal model based on a lumped system is newly developed and implemented in a one-dimensional (1D), two-phase rigorous direct methanol fuel cell (DMFC) model presented in Part I. In this model, the main focus lies on the investigation of the transient thermal behavior of DMFCs and its i...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2010-05, Vol.35 (5), p.2301-2308 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2308 |
---|---|
container_issue | 5 |
container_start_page | 2301 |
container_title | Energy (Oxford) |
container_volume | 35 |
creator | Chippar, Purushothama Ko, Johan Ju, Hyunchul |
description | A transient-thermal model based on a lumped system is newly developed and implemented in a one-dimensional (1D), two-phase rigorous direct methanol fuel cell (DMFC) model presented in Part I. In this model, the main focus lies on the investigation of the transient thermal behavior of DMFCs and its influence on methanol crossover, cell performance, and efficiency. 1D simulations are carried out and the time-dependent thermal behaviors of DMFCs are analyzed for various methanol-feed concentrations and external heat-transfer conditions. Predicting the close interactions between the evolution of the transient temperature, methanol crossover, cell voltage, and efficiency during DMFC operations, the simulations of transient behavior indicate that the insufficient cooling of DMFCs finally lead to thermal runaway, particularly under high methanol-feed concentrations. Therefore, it is concluded that an efficient cooling system is greatly needed to safeguard DMFC operations and enhance the performance of DMFCs. The present 1D DMFC model is a useful tool for attaining a better understanding of complicated physical phenomena in DMFCs, which assists in optimizing the operating conditions of such cells and material/design parameters. |
doi_str_mv | 10.1016/j.energy.2010.02.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753745301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544210000733</els_id><sourcerecordid>753745301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-bef4486de638db436ca9ec4ea56a66f366862e54eba4bb3b5e2900e9d74ef5ff3</originalsourceid><addsrcrecordid>eNp9UU1v1DAQzQGklrb_gIMvCJCarRN_JOGAtNpSWKkIDnC2HHvc9SqJF9tbtLf-B34Bf62_hFlSceQ0muc373nmFcXLii4qWsmr7QImiHeHRU0RovWCVt2z4pQySUvBeX1SvEhpSykVbdedFr-X5G4IvR5IjnpKHqZ8ScIEpfUjYB8mPVyS_DOUu41OQMZgYSAuRGJ9BJPJCHmjp4DYHh8MDEMib64_36zSW_L48It81TGT9fodWaLSIflEgiN5AySjQWlhB5NF0yMUR_xGDxt971EfaX9lzovnTg8JLp7qWfH95sO31afy9svH9Wp5Wxom21z24DhvpQXJWttzJo3uwHDQQmopHZOylTUIDr3mfc96AXVHKXS24eCEc-yseD3r7mL4sYeU1ejTcR89Qdgn1QjWcMFohUw-M00MKUVwahf9qONBVVQdQ1BbNYegjiEoWisMAcdePRnoZPTg8N7Gp3-zdd1Q2okGee9nHuC29x6iSgZzMTBfXNng_2_0B7G3o7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753745301</pqid></control><display><type>article</type><title>A global transient, one-dimensional, two-phase model for direct methanol fuel cells (DMFCs) – Part II: Analysis of the time-dependent thermal behavior of DMFCs</title><source>Access via ScienceDirect (Elsevier)</source><creator>Chippar, Purushothama ; Ko, Johan ; Ju, Hyunchul</creator><creatorcontrib>Chippar, Purushothama ; Ko, Johan ; Ju, Hyunchul</creatorcontrib><description>A transient-thermal model based on a lumped system is newly developed and implemented in a one-dimensional (1D), two-phase rigorous direct methanol fuel cell (DMFC) model presented in Part I. In this model, the main focus lies on the investigation of the transient thermal behavior of DMFCs and its influence on methanol crossover, cell performance, and efficiency. 1D simulations are carried out and the time-dependent thermal behaviors of DMFCs are analyzed for various methanol-feed concentrations and external heat-transfer conditions. Predicting the close interactions between the evolution of the transient temperature, methanol crossover, cell voltage, and efficiency during DMFC operations, the simulations of transient behavior indicate that the insufficient cooling of DMFCs finally lead to thermal runaway, particularly under high methanol-feed concentrations. Therefore, it is concluded that an efficient cooling system is greatly needed to safeguard DMFC operations and enhance the performance of DMFCs. The present 1D DMFC model is a useful tool for attaining a better understanding of complicated physical phenomena in DMFCs, which assists in optimizing the operating conditions of such cells and material/design parameters.</description><identifier>ISSN: 0360-5442</identifier><identifier>DOI: 10.1016/j.energy.2010.02.019</identifier><identifier>CODEN: ENEYDS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Heat management ; Heat transfer ; Methanol crossover ; Theoretical studies. Data and constants. Metering ; Thermal runaway ; Two-phase mass transport</subject><ispartof>Energy (Oxford), 2010-05, Vol.35 (5), p.2301-2308</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-bef4486de638db436ca9ec4ea56a66f366862e54eba4bb3b5e2900e9d74ef5ff3</citedby><cites>FETCH-LOGICAL-c368t-bef4486de638db436ca9ec4ea56a66f366862e54eba4bb3b5e2900e9d74ef5ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2010.02.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27925,27926,45996</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22700957$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chippar, Purushothama</creatorcontrib><creatorcontrib>Ko, Johan</creatorcontrib><creatorcontrib>Ju, Hyunchul</creatorcontrib><title>A global transient, one-dimensional, two-phase model for direct methanol fuel cells (DMFCs) – Part II: Analysis of the time-dependent thermal behavior of DMFCs</title><title>Energy (Oxford)</title><description>A transient-thermal model based on a lumped system is newly developed and implemented in a one-dimensional (1D), two-phase rigorous direct methanol fuel cell (DMFC) model presented in Part I. In this model, the main focus lies on the investigation of the transient thermal behavior of DMFCs and its influence on methanol crossover, cell performance, and efficiency. 1D simulations are carried out and the time-dependent thermal behaviors of DMFCs are analyzed for various methanol-feed concentrations and external heat-transfer conditions. Predicting the close interactions between the evolution of the transient temperature, methanol crossover, cell voltage, and efficiency during DMFC operations, the simulations of transient behavior indicate that the insufficient cooling of DMFCs finally lead to thermal runaway, particularly under high methanol-feed concentrations. Therefore, it is concluded that an efficient cooling system is greatly needed to safeguard DMFC operations and enhance the performance of DMFCs. The present 1D DMFC model is a useful tool for attaining a better understanding of complicated physical phenomena in DMFCs, which assists in optimizing the operating conditions of such cells and material/design parameters.</description><subject>Applied sciences</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Heat management</subject><subject>Heat transfer</subject><subject>Methanol crossover</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal runaway</subject><subject>Two-phase mass transport</subject><issn>0360-5442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UU1v1DAQzQGklrb_gIMvCJCarRN_JOGAtNpSWKkIDnC2HHvc9SqJF9tbtLf-B34Bf62_hFlSceQ0muc373nmFcXLii4qWsmr7QImiHeHRU0RovWCVt2z4pQySUvBeX1SvEhpSykVbdedFr-X5G4IvR5IjnpKHqZ8ScIEpfUjYB8mPVyS_DOUu41OQMZgYSAuRGJ9BJPJCHmjp4DYHh8MDEMib64_36zSW_L48It81TGT9fodWaLSIflEgiN5AySjQWlhB5NF0yMUR_xGDxt971EfaX9lzovnTg8JLp7qWfH95sO31afy9svH9Wp5Wxom21z24DhvpQXJWttzJo3uwHDQQmopHZOylTUIDr3mfc96AXVHKXS24eCEc-yseD3r7mL4sYeU1ejTcR89Qdgn1QjWcMFohUw-M00MKUVwahf9qONBVVQdQ1BbNYegjiEoWisMAcdePRnoZPTg8N7Gp3-zdd1Q2okGee9nHuC29x6iSgZzMTBfXNng_2_0B7G3o7g</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Chippar, Purushothama</creator><creator>Ko, Johan</creator><creator>Ju, Hyunchul</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20100501</creationdate><title>A global transient, one-dimensional, two-phase model for direct methanol fuel cells (DMFCs) – Part II: Analysis of the time-dependent thermal behavior of DMFCs</title><author>Chippar, Purushothama ; Ko, Johan ; Ju, Hyunchul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-bef4486de638db436ca9ec4ea56a66f366862e54eba4bb3b5e2900e9d74ef5ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Heat management</topic><topic>Heat transfer</topic><topic>Methanol crossover</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal runaway</topic><topic>Two-phase mass transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chippar, Purushothama</creatorcontrib><creatorcontrib>Ko, Johan</creatorcontrib><creatorcontrib>Ju, Hyunchul</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chippar, Purushothama</au><au>Ko, Johan</au><au>Ju, Hyunchul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A global transient, one-dimensional, two-phase model for direct methanol fuel cells (DMFCs) – Part II: Analysis of the time-dependent thermal behavior of DMFCs</atitle><jtitle>Energy (Oxford)</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>35</volume><issue>5</issue><spage>2301</spage><epage>2308</epage><pages>2301-2308</pages><issn>0360-5442</issn><coden>ENEYDS</coden><abstract>A transient-thermal model based on a lumped system is newly developed and implemented in a one-dimensional (1D), two-phase rigorous direct methanol fuel cell (DMFC) model presented in Part I. In this model, the main focus lies on the investigation of the transient thermal behavior of DMFCs and its influence on methanol crossover, cell performance, and efficiency. 1D simulations are carried out and the time-dependent thermal behaviors of DMFCs are analyzed for various methanol-feed concentrations and external heat-transfer conditions. Predicting the close interactions between the evolution of the transient temperature, methanol crossover, cell voltage, and efficiency during DMFC operations, the simulations of transient behavior indicate that the insufficient cooling of DMFCs finally lead to thermal runaway, particularly under high methanol-feed concentrations. Therefore, it is concluded that an efficient cooling system is greatly needed to safeguard DMFC operations and enhance the performance of DMFCs. The present 1D DMFC model is a useful tool for attaining a better understanding of complicated physical phenomena in DMFCs, which assists in optimizing the operating conditions of such cells and material/design parameters.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2010.02.019</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2010-05, Vol.35 (5), p.2301-2308 |
issn | 0360-5442 |
language | eng |
recordid | cdi_proquest_miscellaneous_753745301 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Heat management Heat transfer Methanol crossover Theoretical studies. Data and constants. Metering Thermal runaway Two-phase mass transport |
title | A global transient, one-dimensional, two-phase model for direct methanol fuel cells (DMFCs) – Part II: Analysis of the time-dependent thermal behavior of DMFCs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20global%20transient,%20one-dimensional,%20two-phase%20model%20for%20direct%20methanol%20fuel%20cells%20(DMFCs)%20%E2%80%93%20Part%20II:%20Analysis%20of%20the%20time-dependent%20thermal%20behavior%20of%20DMFCs&rft.jtitle=Energy%20(Oxford)&rft.au=Chippar,%20Purushothama&rft.date=2010-05-01&rft.volume=35&rft.issue=5&rft.spage=2301&rft.epage=2308&rft.pages=2301-2308&rft.issn=0360-5442&rft.coden=ENEYDS&rft_id=info:doi/10.1016/j.energy.2010.02.019&rft_dat=%3Cproquest_cross%3E753745301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753745301&rft_id=info:pmid/&rft_els_id=S0360544210000733&rfr_iscdi=true |