A global transient, one-dimensional, two-phase model for direct methanol fuel cells (DMFCs) – Part II: Analysis of the time-dependent thermal behavior of DMFCs

A transient-thermal model based on a lumped system is newly developed and implemented in a one-dimensional (1D), two-phase rigorous direct methanol fuel cell (DMFC) model presented in Part I. In this model, the main focus lies on the investigation of the transient thermal behavior of DMFCs and its i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2010-05, Vol.35 (5), p.2301-2308
Hauptverfasser: Chippar, Purushothama, Ko, Johan, Ju, Hyunchul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2308
container_issue 5
container_start_page 2301
container_title Energy (Oxford)
container_volume 35
creator Chippar, Purushothama
Ko, Johan
Ju, Hyunchul
description A transient-thermal model based on a lumped system is newly developed and implemented in a one-dimensional (1D), two-phase rigorous direct methanol fuel cell (DMFC) model presented in Part I. In this model, the main focus lies on the investigation of the transient thermal behavior of DMFCs and its influence on methanol crossover, cell performance, and efficiency. 1D simulations are carried out and the time-dependent thermal behaviors of DMFCs are analyzed for various methanol-feed concentrations and external heat-transfer conditions. Predicting the close interactions between the evolution of the transient temperature, methanol crossover, cell voltage, and efficiency during DMFC operations, the simulations of transient behavior indicate that the insufficient cooling of DMFCs finally lead to thermal runaway, particularly under high methanol-feed concentrations. Therefore, it is concluded that an efficient cooling system is greatly needed to safeguard DMFC operations and enhance the performance of DMFCs. The present 1D DMFC model is a useful tool for attaining a better understanding of complicated physical phenomena in DMFCs, which assists in optimizing the operating conditions of such cells and material/design parameters.
doi_str_mv 10.1016/j.energy.2010.02.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753745301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544210000733</els_id><sourcerecordid>753745301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-bef4486de638db436ca9ec4ea56a66f366862e54eba4bb3b5e2900e9d74ef5ff3</originalsourceid><addsrcrecordid>eNp9UU1v1DAQzQGklrb_gIMvCJCarRN_JOGAtNpSWKkIDnC2HHvc9SqJF9tbtLf-B34Bf62_hFlSceQ0muc373nmFcXLii4qWsmr7QImiHeHRU0RovWCVt2z4pQySUvBeX1SvEhpSykVbdedFr-X5G4IvR5IjnpKHqZ8ScIEpfUjYB8mPVyS_DOUu41OQMZgYSAuRGJ9BJPJCHmjp4DYHh8MDEMib64_36zSW_L48It81TGT9fodWaLSIflEgiN5AySjQWlhB5NF0yMUR_xGDxt971EfaX9lzovnTg8JLp7qWfH95sO31afy9svH9Wp5Wxom21z24DhvpQXJWttzJo3uwHDQQmopHZOylTUIDr3mfc96AXVHKXS24eCEc-yseD3r7mL4sYeU1ejTcR89Qdgn1QjWcMFohUw-M00MKUVwahf9qONBVVQdQ1BbNYegjiEoWisMAcdePRnoZPTg8N7Gp3-zdd1Q2okGee9nHuC29x6iSgZzMTBfXNng_2_0B7G3o7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753745301</pqid></control><display><type>article</type><title>A global transient, one-dimensional, two-phase model for direct methanol fuel cells (DMFCs) – Part II: Analysis of the time-dependent thermal behavior of DMFCs</title><source>Access via ScienceDirect (Elsevier)</source><creator>Chippar, Purushothama ; Ko, Johan ; Ju, Hyunchul</creator><creatorcontrib>Chippar, Purushothama ; Ko, Johan ; Ju, Hyunchul</creatorcontrib><description>A transient-thermal model based on a lumped system is newly developed and implemented in a one-dimensional (1D), two-phase rigorous direct methanol fuel cell (DMFC) model presented in Part I. In this model, the main focus lies on the investigation of the transient thermal behavior of DMFCs and its influence on methanol crossover, cell performance, and efficiency. 1D simulations are carried out and the time-dependent thermal behaviors of DMFCs are analyzed for various methanol-feed concentrations and external heat-transfer conditions. Predicting the close interactions between the evolution of the transient temperature, methanol crossover, cell voltage, and efficiency during DMFC operations, the simulations of transient behavior indicate that the insufficient cooling of DMFCs finally lead to thermal runaway, particularly under high methanol-feed concentrations. Therefore, it is concluded that an efficient cooling system is greatly needed to safeguard DMFC operations and enhance the performance of DMFCs. The present 1D DMFC model is a useful tool for attaining a better understanding of complicated physical phenomena in DMFCs, which assists in optimizing the operating conditions of such cells and material/design parameters.</description><identifier>ISSN: 0360-5442</identifier><identifier>DOI: 10.1016/j.energy.2010.02.019</identifier><identifier>CODEN: ENEYDS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Heat management ; Heat transfer ; Methanol crossover ; Theoretical studies. Data and constants. Metering ; Thermal runaway ; Two-phase mass transport</subject><ispartof>Energy (Oxford), 2010-05, Vol.35 (5), p.2301-2308</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-bef4486de638db436ca9ec4ea56a66f366862e54eba4bb3b5e2900e9d74ef5ff3</citedby><cites>FETCH-LOGICAL-c368t-bef4486de638db436ca9ec4ea56a66f366862e54eba4bb3b5e2900e9d74ef5ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2010.02.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27925,27926,45996</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22700957$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chippar, Purushothama</creatorcontrib><creatorcontrib>Ko, Johan</creatorcontrib><creatorcontrib>Ju, Hyunchul</creatorcontrib><title>A global transient, one-dimensional, two-phase model for direct methanol fuel cells (DMFCs) – Part II: Analysis of the time-dependent thermal behavior of DMFCs</title><title>Energy (Oxford)</title><description>A transient-thermal model based on a lumped system is newly developed and implemented in a one-dimensional (1D), two-phase rigorous direct methanol fuel cell (DMFC) model presented in Part I. In this model, the main focus lies on the investigation of the transient thermal behavior of DMFCs and its influence on methanol crossover, cell performance, and efficiency. 1D simulations are carried out and the time-dependent thermal behaviors of DMFCs are analyzed for various methanol-feed concentrations and external heat-transfer conditions. Predicting the close interactions between the evolution of the transient temperature, methanol crossover, cell voltage, and efficiency during DMFC operations, the simulations of transient behavior indicate that the insufficient cooling of DMFCs finally lead to thermal runaway, particularly under high methanol-feed concentrations. Therefore, it is concluded that an efficient cooling system is greatly needed to safeguard DMFC operations and enhance the performance of DMFCs. The present 1D DMFC model is a useful tool for attaining a better understanding of complicated physical phenomena in DMFCs, which assists in optimizing the operating conditions of such cells and material/design parameters.</description><subject>Applied sciences</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Heat management</subject><subject>Heat transfer</subject><subject>Methanol crossover</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal runaway</subject><subject>Two-phase mass transport</subject><issn>0360-5442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UU1v1DAQzQGklrb_gIMvCJCarRN_JOGAtNpSWKkIDnC2HHvc9SqJF9tbtLf-B34Bf62_hFlSceQ0muc373nmFcXLii4qWsmr7QImiHeHRU0RovWCVt2z4pQySUvBeX1SvEhpSykVbdedFr-X5G4IvR5IjnpKHqZ8ScIEpfUjYB8mPVyS_DOUu41OQMZgYSAuRGJ9BJPJCHmjp4DYHh8MDEMib64_36zSW_L48It81TGT9fodWaLSIflEgiN5AySjQWlhB5NF0yMUR_xGDxt971EfaX9lzovnTg8JLp7qWfH95sO31afy9svH9Wp5Wxom21z24DhvpQXJWttzJo3uwHDQQmopHZOylTUIDr3mfc96AXVHKXS24eCEc-yseD3r7mL4sYeU1ejTcR89Qdgn1QjWcMFohUw-M00MKUVwahf9qONBVVQdQ1BbNYegjiEoWisMAcdePRnoZPTg8N7Gp3-zdd1Q2okGee9nHuC29x6iSgZzMTBfXNng_2_0B7G3o7g</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Chippar, Purushothama</creator><creator>Ko, Johan</creator><creator>Ju, Hyunchul</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20100501</creationdate><title>A global transient, one-dimensional, two-phase model for direct methanol fuel cells (DMFCs) – Part II: Analysis of the time-dependent thermal behavior of DMFCs</title><author>Chippar, Purushothama ; Ko, Johan ; Ju, Hyunchul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-bef4486de638db436ca9ec4ea56a66f366862e54eba4bb3b5e2900e9d74ef5ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Heat management</topic><topic>Heat transfer</topic><topic>Methanol crossover</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal runaway</topic><topic>Two-phase mass transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chippar, Purushothama</creatorcontrib><creatorcontrib>Ko, Johan</creatorcontrib><creatorcontrib>Ju, Hyunchul</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chippar, Purushothama</au><au>Ko, Johan</au><au>Ju, Hyunchul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A global transient, one-dimensional, two-phase model for direct methanol fuel cells (DMFCs) – Part II: Analysis of the time-dependent thermal behavior of DMFCs</atitle><jtitle>Energy (Oxford)</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>35</volume><issue>5</issue><spage>2301</spage><epage>2308</epage><pages>2301-2308</pages><issn>0360-5442</issn><coden>ENEYDS</coden><abstract>A transient-thermal model based on a lumped system is newly developed and implemented in a one-dimensional (1D), two-phase rigorous direct methanol fuel cell (DMFC) model presented in Part I. In this model, the main focus lies on the investigation of the transient thermal behavior of DMFCs and its influence on methanol crossover, cell performance, and efficiency. 1D simulations are carried out and the time-dependent thermal behaviors of DMFCs are analyzed for various methanol-feed concentrations and external heat-transfer conditions. Predicting the close interactions between the evolution of the transient temperature, methanol crossover, cell voltage, and efficiency during DMFC operations, the simulations of transient behavior indicate that the insufficient cooling of DMFCs finally lead to thermal runaway, particularly under high methanol-feed concentrations. Therefore, it is concluded that an efficient cooling system is greatly needed to safeguard DMFC operations and enhance the performance of DMFCs. The present 1D DMFC model is a useful tool for attaining a better understanding of complicated physical phenomena in DMFCs, which assists in optimizing the operating conditions of such cells and material/design parameters.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2010.02.019</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2010-05, Vol.35 (5), p.2301-2308
issn 0360-5442
language eng
recordid cdi_proquest_miscellaneous_753745301
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
Heat management
Heat transfer
Methanol crossover
Theoretical studies. Data and constants. Metering
Thermal runaway
Two-phase mass transport
title A global transient, one-dimensional, two-phase model for direct methanol fuel cells (DMFCs) – Part II: Analysis of the time-dependent thermal behavior of DMFCs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20global%20transient,%20one-dimensional,%20two-phase%20model%20for%20direct%20methanol%20fuel%20cells%20(DMFCs)%20%E2%80%93%20Part%20II:%20Analysis%20of%20the%20time-dependent%20thermal%20behavior%20of%20DMFCs&rft.jtitle=Energy%20(Oxford)&rft.au=Chippar,%20Purushothama&rft.date=2010-05-01&rft.volume=35&rft.issue=5&rft.spage=2301&rft.epage=2308&rft.pages=2301-2308&rft.issn=0360-5442&rft.coden=ENEYDS&rft_id=info:doi/10.1016/j.energy.2010.02.019&rft_dat=%3Cproquest_cross%3E753745301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753745301&rft_id=info:pmid/&rft_els_id=S0360544210000733&rfr_iscdi=true