Reduction of the dislocation density in molecular beam epitaxial CdTe(2 1 1)B on Ge(2 1 1)

The high dislocation density (2×10 7/cm 2 for a thickness of 7 μm) in CdTe(2 1 1)B on Ge(2 1 1) has become a roadblock for the technological exploitation of this material. We present a systematic study of in situ and post-growth annealing cycles aimed at reducing it. An etch pit density of 2×10 6/cm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2010-05, Vol.312 (10), p.1721-1725
Hauptverfasser: Badano, G., Robin, I.C., Amstatt, B., Gemain, F., Baudry, X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1725
container_issue 10
container_start_page 1721
container_title Journal of crystal growth
container_volume 312
creator Badano, G.
Robin, I.C.
Amstatt, B.
Gemain, F.
Baudry, X.
description The high dislocation density (2×10 7/cm 2 for a thickness of 7 μm) in CdTe(2 1 1)B on Ge(2 1 1) has become a roadblock for the technological exploitation of this material. We present a systematic study of in situ and post-growth annealing cycles aimed at reducing it. An etch pit density of 2×10 6/cm 2 was achieved by optimizing the growth conditions and annealing the samples in situ. This finding was corroborated by high-resolution X-ray diffraction, atomic force microscopy, photoluminescence and ellipsometry measurements.
doi_str_mv 10.1016/j.jcrysgro.2010.02.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753745226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024810000850</els_id><sourcerecordid>753745226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-4a57fd2fc502241cb81a8fd9669d65c081cd6c715eb03f31c1540304f2dc6f4d3</originalsourceid><addsrcrecordid>eNqFUMFOGzEQtSqQGqC_gHypSg8bxt61d3MrRIVWQkJC9MLFcsbj1tFmndob1Px9HUK4cpnRPL03b-Yxdi5gKkDoy-V0iWmbf6c4lVBAkFMQ4gObiK6tKwUgj9ikVFmBbLqP7CTnJUBRCpiwpwdyGxxDHHj0fPxD3IXcR7QvkKMhh3HLw8BXsSfc9DbxBdkVp3UY7b9gez53j3QhueDi6zUvmtvDdMaOve0zfXrtp-zXzffH-Y_q7v725_zqrsK6bcaqsar1TnpU5cRG4KITtvNupvXMaYXQCXQaW6FoAbWvBQrVQA2Nlw61b1x9yr7s965T_LuhPJpVyEh9bweKm2xaVXyUlLow9Z6JKeacyJt1CiubtkaA2WVpluaQpdllaUCakmURfn61sBlt75MdMOQ39W63nilVeN_2PCr_PgdKJmOgAcmFRDgaF8N7Vv8BLh6K-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753745226</pqid></control><display><type>article</type><title>Reduction of the dislocation density in molecular beam epitaxial CdTe(2 1 1)B on Ge(2 1 1)</title><source>Elsevier ScienceDirect Journals</source><creator>Badano, G. ; Robin, I.C. ; Amstatt, B. ; Gemain, F. ; Baudry, X.</creator><creatorcontrib>Badano, G. ; Robin, I.C. ; Amstatt, B. ; Gemain, F. ; Baudry, X.</creatorcontrib><description>The high dislocation density (2×10 7/cm 2 for a thickness of 7 μm) in CdTe(2 1 1)B on Ge(2 1 1) has become a roadblock for the technological exploitation of this material. We present a systematic study of in situ and post-growth annealing cycles aimed at reducing it. An etch pit density of 2×10 6/cm 2 was achieved by optimizing the growth conditions and annealing the samples in situ. This finding was corroborated by high-resolution X-ray diffraction, atomic force microscopy, photoluminescence and ellipsometry measurements.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2010.02.011</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Defects ; A1. Substrates ; A3. Molecular beam epitaxy ; Annealing ; B1. Cadmium compounds ; B2. Semiconducting II–VI materials ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Crystal growth ; Density ; Diffraction ; Dislocation density ; Exact sciences and technology ; Materials science ; Methods of crystal growth; physics of crystal growth ; Methods of deposition of films and coatings; film growth and epitaxy ; Molecular beams ; Molecular, atomic, ion, and chemical beam epitaxy ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optimization ; Photoluminescence ; Physics ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation ; X-rays</subject><ispartof>Journal of crystal growth, 2010-05, Vol.312 (10), p.1721-1725</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-4a57fd2fc502241cb81a8fd9669d65c081cd6c715eb03f31c1540304f2dc6f4d3</citedby><cites>FETCH-LOGICAL-c374t-4a57fd2fc502241cb81a8fd9669d65c081cd6c715eb03f31c1540304f2dc6f4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022024810000850$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22636955$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Badano, G.</creatorcontrib><creatorcontrib>Robin, I.C.</creatorcontrib><creatorcontrib>Amstatt, B.</creatorcontrib><creatorcontrib>Gemain, F.</creatorcontrib><creatorcontrib>Baudry, X.</creatorcontrib><title>Reduction of the dislocation density in molecular beam epitaxial CdTe(2 1 1)B on Ge(2 1 1)</title><title>Journal of crystal growth</title><description>The high dislocation density (2×10 7/cm 2 for a thickness of 7 μm) in CdTe(2 1 1)B on Ge(2 1 1) has become a roadblock for the technological exploitation of this material. We present a systematic study of in situ and post-growth annealing cycles aimed at reducing it. An etch pit density of 2×10 6/cm 2 was achieved by optimizing the growth conditions and annealing the samples in situ. This finding was corroborated by high-resolution X-ray diffraction, atomic force microscopy, photoluminescence and ellipsometry measurements.</description><subject>A1. Defects</subject><subject>A1. Substrates</subject><subject>A3. Molecular beam epitaxy</subject><subject>Annealing</subject><subject>B1. Cadmium compounds</subject><subject>B2. Semiconducting II–VI materials</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystal growth</subject><subject>Density</subject><subject>Diffraction</subject><subject>Dislocation density</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Molecular beams</subject><subject>Molecular, atomic, ion, and chemical beam epitaxy</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optimization</subject><subject>Photoluminescence</subject><subject>Physics</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><subject>X-rays</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFUMFOGzEQtSqQGqC_gHypSg8bxt61d3MrRIVWQkJC9MLFcsbj1tFmndob1Px9HUK4cpnRPL03b-Yxdi5gKkDoy-V0iWmbf6c4lVBAkFMQ4gObiK6tKwUgj9ikVFmBbLqP7CTnJUBRCpiwpwdyGxxDHHj0fPxD3IXcR7QvkKMhh3HLw8BXsSfc9DbxBdkVp3UY7b9gez53j3QhueDi6zUvmtvDdMaOve0zfXrtp-zXzffH-Y_q7v725_zqrsK6bcaqsar1TnpU5cRG4KITtvNupvXMaYXQCXQaW6FoAbWvBQrVQA2Nlw61b1x9yr7s965T_LuhPJpVyEh9bweKm2xaVXyUlLow9Z6JKeacyJt1CiubtkaA2WVpluaQpdllaUCakmURfn61sBlt75MdMOQ39W63nilVeN_2PCr_PgdKJmOgAcmFRDgaF8N7Vv8BLh6K-w</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Badano, G.</creator><creator>Robin, I.C.</creator><creator>Amstatt, B.</creator><creator>Gemain, F.</creator><creator>Baudry, X.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100501</creationdate><title>Reduction of the dislocation density in molecular beam epitaxial CdTe(2 1 1)B on Ge(2 1 1)</title><author>Badano, G. ; Robin, I.C. ; Amstatt, B. ; Gemain, F. ; Baudry, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-4a57fd2fc502241cb81a8fd9669d65c081cd6c715eb03f31c1540304f2dc6f4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>A1. Defects</topic><topic>A1. Substrates</topic><topic>A3. Molecular beam epitaxy</topic><topic>Annealing</topic><topic>B1. Cadmium compounds</topic><topic>B2. Semiconducting II–VI materials</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystal growth</topic><topic>Density</topic><topic>Diffraction</topic><topic>Dislocation density</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Molecular beams</topic><topic>Molecular, atomic, ion, and chemical beam epitaxy</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optimization</topic><topic>Photoluminescence</topic><topic>Physics</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badano, G.</creatorcontrib><creatorcontrib>Robin, I.C.</creatorcontrib><creatorcontrib>Amstatt, B.</creatorcontrib><creatorcontrib>Gemain, F.</creatorcontrib><creatorcontrib>Baudry, X.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badano, G.</au><au>Robin, I.C.</au><au>Amstatt, B.</au><au>Gemain, F.</au><au>Baudry, X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction of the dislocation density in molecular beam epitaxial CdTe(2 1 1)B on Ge(2 1 1)</atitle><jtitle>Journal of crystal growth</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>312</volume><issue>10</issue><spage>1721</spage><epage>1725</epage><pages>1721-1725</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>The high dislocation density (2×10 7/cm 2 for a thickness of 7 μm) in CdTe(2 1 1)B on Ge(2 1 1) has become a roadblock for the technological exploitation of this material. We present a systematic study of in situ and post-growth annealing cycles aimed at reducing it. An etch pit density of 2×10 6/cm 2 was achieved by optimizing the growth conditions and annealing the samples in situ. This finding was corroborated by high-resolution X-ray diffraction, atomic force microscopy, photoluminescence and ellipsometry measurements.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2010.02.011</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2010-05, Vol.312 (10), p.1721-1725
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_753745226
source Elsevier ScienceDirect Journals
subjects A1. Defects
A1. Substrates
A3. Molecular beam epitaxy
Annealing
B1. Cadmium compounds
B2. Semiconducting II–VI materials
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Crystal growth
Density
Diffraction
Dislocation density
Exact sciences and technology
Materials science
Methods of crystal growth
physics of crystal growth
Methods of deposition of films and coatings
film growth and epitaxy
Molecular beams
Molecular, atomic, ion, and chemical beam epitaxy
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Optimization
Photoluminescence
Physics
Theory and models of crystal growth
physics of crystal growth, crystal morphology and orientation
X-rays
title Reduction of the dislocation density in molecular beam epitaxial CdTe(2 1 1)B on Ge(2 1 1)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20of%20the%20dislocation%20density%20in%20molecular%20beam%20epitaxial%20CdTe(2%201%201)B%20on%20Ge(2%201%201)&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Badano,%20G.&rft.date=2010-05-01&rft.volume=312&rft.issue=10&rft.spage=1721&rft.epage=1725&rft.pages=1721-1725&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2010.02.011&rft_dat=%3Cproquest_cross%3E753745226%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753745226&rft_id=info:pmid/&rft_els_id=S0022024810000850&rfr_iscdi=true