A theory for species migration in a finitely strained solid with application to polymer network swelling

We present a theory for the behavior of a solid undergoing two interdependent processes, a macroscopic or mechanical process due to the deformation of the solid and a microscopic or chemical process due to the migration of a chemical species through the solid. The principle of virtual power is invok...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanics and physics of solids 2010-04, Vol.58 (4), p.515-529
Hauptverfasser: Duda, Fernando P., Souza, Angela C., Fried, Eliot
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 529
container_issue 4
container_start_page 515
container_title Journal of the mechanics and physics of solids
container_volume 58
creator Duda, Fernando P.
Souza, Angela C.
Fried, Eliot
description We present a theory for the behavior of a solid undergoing two interdependent processes, a macroscopic or mechanical process due to the deformation of the solid and a microscopic or chemical process due to the migration of a chemical species through the solid. The principle of virtual power is invoked to deduce the basic balances of the theory, namely the mechanical force balance and the transport balance for the chemical species. In combination with thermodynamically consistent constitutive relations, these balances generate the basic equations of the theory. Keeping in mind applications involving the swelling of polymer networks by liquids, a specialization of the theory is presented and applied to study the influences of mechanical and chemical interactions on equilibrium states and diffusive dynamical processes. It is shown that the possibility of a mechanically induced phase transition is governed by two parameters: the Flory interaction parameter and a parameter given by the product between the number of cross-linked units per unit reference volume and the molecular volume of the liquid molecule. As for diffusion, it is shown that the theory is able to describe the pressure-induced diffusion in swollen membranes.
doi_str_mv 10.1016/j.jmps.2010.01.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753742295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022509610000189</els_id><sourcerecordid>753742295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-dd5b25d1e6350330deb3fe76fd8552479a55d722145a098c74e93559ecc0c023</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhjOARCn8ASZvTAlnJ44biaWq-JIqsXS3XPvSOiRxsF2q_HtShZnppNP7vLp7kuSBQkaBlk9N1nRDyBhMC6AZQHWVLAAYSzlU5U1yG0IDABwEXSTHNYlHdH4ktfMkDKgtBtLZg1fRup7YnihS295GbEcSole2R0OCa60hZxuPRA1Da_Wcjo4Mrh079KTHeHb-i4Qztq3tD3fJda3agPd_c5nsXl92m_d0-_n2sVlvU52LMqbG8D3jhmKZc8hzMLjPaxRlbVacs0JUinMjGKMFV1CttCiwyjmvUGvQwPJl8jjXDt59nzBE2dmgpxNUj-4UpOC5KBir-JRkc1J7F4LHWg7edsqPkoK8iJSNvIiUF5ESqJxETtDzDOH0wo9FL8MkrNdorEcdpXH2P_wXSWeABQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753742295</pqid></control><display><type>article</type><title>A theory for species migration in a finitely strained solid with application to polymer network swelling</title><source>Elsevier ScienceDirect Journals</source><creator>Duda, Fernando P. ; Souza, Angela C. ; Fried, Eliot</creator><creatorcontrib>Duda, Fernando P. ; Souza, Angela C. ; Fried, Eliot</creatorcontrib><description>We present a theory for the behavior of a solid undergoing two interdependent processes, a macroscopic or mechanical process due to the deformation of the solid and a microscopic or chemical process due to the migration of a chemical species through the solid. The principle of virtual power is invoked to deduce the basic balances of the theory, namely the mechanical force balance and the transport balance for the chemical species. In combination with thermodynamically consistent constitutive relations, these balances generate the basic equations of the theory. Keeping in mind applications involving the swelling of polymer networks by liquids, a specialization of the theory is presented and applied to study the influences of mechanical and chemical interactions on equilibrium states and diffusive dynamical processes. It is shown that the possibility of a mechanically induced phase transition is governed by two parameters: the Flory interaction parameter and a parameter given by the product between the number of cross-linked units per unit reference volume and the molecular volume of the liquid molecule. As for diffusion, it is shown that the theory is able to describe the pressure-induced diffusion in swollen membranes.</description><identifier>ISSN: 0022-5096</identifier><identifier>DOI: 10.1016/j.jmps.2010.01.009</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Diffusion ; Interaction parameters ; Liquids ; Mathematical analysis ; Mechanochemistry ; Migration ; Networks ; Phase coexistence ; Swelling ; Transport</subject><ispartof>Journal of the mechanics and physics of solids, 2010-04, Vol.58 (4), p.515-529</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-dd5b25d1e6350330deb3fe76fd8552479a55d722145a098c74e93559ecc0c023</citedby><cites>FETCH-LOGICAL-c376t-dd5b25d1e6350330deb3fe76fd8552479a55d722145a098c74e93559ecc0c023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmps.2010.01.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Duda, Fernando P.</creatorcontrib><creatorcontrib>Souza, Angela C.</creatorcontrib><creatorcontrib>Fried, Eliot</creatorcontrib><title>A theory for species migration in a finitely strained solid with application to polymer network swelling</title><title>Journal of the mechanics and physics of solids</title><description>We present a theory for the behavior of a solid undergoing two interdependent processes, a macroscopic or mechanical process due to the deformation of the solid and a microscopic or chemical process due to the migration of a chemical species through the solid. The principle of virtual power is invoked to deduce the basic balances of the theory, namely the mechanical force balance and the transport balance for the chemical species. In combination with thermodynamically consistent constitutive relations, these balances generate the basic equations of the theory. Keeping in mind applications involving the swelling of polymer networks by liquids, a specialization of the theory is presented and applied to study the influences of mechanical and chemical interactions on equilibrium states and diffusive dynamical processes. It is shown that the possibility of a mechanically induced phase transition is governed by two parameters: the Flory interaction parameter and a parameter given by the product between the number of cross-linked units per unit reference volume and the molecular volume of the liquid molecule. As for diffusion, it is shown that the theory is able to describe the pressure-induced diffusion in swollen membranes.</description><subject>Diffusion</subject><subject>Interaction parameters</subject><subject>Liquids</subject><subject>Mathematical analysis</subject><subject>Mechanochemistry</subject><subject>Migration</subject><subject>Networks</subject><subject>Phase coexistence</subject><subject>Swelling</subject><subject>Transport</subject><issn>0022-5096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhjOARCn8ASZvTAlnJ44biaWq-JIqsXS3XPvSOiRxsF2q_HtShZnppNP7vLp7kuSBQkaBlk9N1nRDyBhMC6AZQHWVLAAYSzlU5U1yG0IDABwEXSTHNYlHdH4ktfMkDKgtBtLZg1fRup7YnihS295GbEcSole2R0OCa60hZxuPRA1Da_Wcjo4Mrh079KTHeHb-i4Qztq3tD3fJda3agPd_c5nsXl92m_d0-_n2sVlvU52LMqbG8D3jhmKZc8hzMLjPaxRlbVacs0JUinMjGKMFV1CttCiwyjmvUGvQwPJl8jjXDt59nzBE2dmgpxNUj-4UpOC5KBir-JRkc1J7F4LHWg7edsqPkoK8iJSNvIiUF5ESqJxETtDzDOH0wo9FL8MkrNdorEcdpXH2P_wXSWeABQ</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Duda, Fernando P.</creator><creator>Souza, Angela C.</creator><creator>Fried, Eliot</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20100401</creationdate><title>A theory for species migration in a finitely strained solid with application to polymer network swelling</title><author>Duda, Fernando P. ; Souza, Angela C. ; Fried, Eliot</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-dd5b25d1e6350330deb3fe76fd8552479a55d722145a098c74e93559ecc0c023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Diffusion</topic><topic>Interaction parameters</topic><topic>Liquids</topic><topic>Mathematical analysis</topic><topic>Mechanochemistry</topic><topic>Migration</topic><topic>Networks</topic><topic>Phase coexistence</topic><topic>Swelling</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duda, Fernando P.</creatorcontrib><creatorcontrib>Souza, Angela C.</creatorcontrib><creatorcontrib>Fried, Eliot</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the mechanics and physics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duda, Fernando P.</au><au>Souza, Angela C.</au><au>Fried, Eliot</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A theory for species migration in a finitely strained solid with application to polymer network swelling</atitle><jtitle>Journal of the mechanics and physics of solids</jtitle><date>2010-04-01</date><risdate>2010</risdate><volume>58</volume><issue>4</issue><spage>515</spage><epage>529</epage><pages>515-529</pages><issn>0022-5096</issn><abstract>We present a theory for the behavior of a solid undergoing two interdependent processes, a macroscopic or mechanical process due to the deformation of the solid and a microscopic or chemical process due to the migration of a chemical species through the solid. The principle of virtual power is invoked to deduce the basic balances of the theory, namely the mechanical force balance and the transport balance for the chemical species. In combination with thermodynamically consistent constitutive relations, these balances generate the basic equations of the theory. Keeping in mind applications involving the swelling of polymer networks by liquids, a specialization of the theory is presented and applied to study the influences of mechanical and chemical interactions on equilibrium states and diffusive dynamical processes. It is shown that the possibility of a mechanically induced phase transition is governed by two parameters: the Flory interaction parameter and a parameter given by the product between the number of cross-linked units per unit reference volume and the molecular volume of the liquid molecule. As for diffusion, it is shown that the theory is able to describe the pressure-induced diffusion in swollen membranes.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jmps.2010.01.009</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-5096
ispartof Journal of the mechanics and physics of solids, 2010-04, Vol.58 (4), p.515-529
issn 0022-5096
language eng
recordid cdi_proquest_miscellaneous_753742295
source Elsevier ScienceDirect Journals
subjects Diffusion
Interaction parameters
Liquids
Mathematical analysis
Mechanochemistry
Migration
Networks
Phase coexistence
Swelling
Transport
title A theory for species migration in a finitely strained solid with application to polymer network swelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20theory%20for%20species%20migration%20in%20a%20finitely%20strained%20solid%20with%20application%20to%20polymer%20network%20swelling&rft.jtitle=Journal%20of%20the%20mechanics%20and%20physics%20of%20solids&rft.au=Duda,%20Fernando%20P.&rft.date=2010-04-01&rft.volume=58&rft.issue=4&rft.spage=515&rft.epage=529&rft.pages=515-529&rft.issn=0022-5096&rft_id=info:doi/10.1016/j.jmps.2010.01.009&rft_dat=%3Cproquest_cross%3E753742295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753742295&rft_id=info:pmid/&rft_els_id=S0022509610000189&rfr_iscdi=true