A theory for species migration in a finitely strained solid with application to polymer network swelling
We present a theory for the behavior of a solid undergoing two interdependent processes, a macroscopic or mechanical process due to the deformation of the solid and a microscopic or chemical process due to the migration of a chemical species through the solid. The principle of virtual power is invok...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanics and physics of solids 2010-04, Vol.58 (4), p.515-529 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 529 |
---|---|
container_issue | 4 |
container_start_page | 515 |
container_title | Journal of the mechanics and physics of solids |
container_volume | 58 |
creator | Duda, Fernando P. Souza, Angela C. Fried, Eliot |
description | We present a theory for the behavior of a solid undergoing two interdependent processes, a macroscopic or mechanical process due to the deformation of the solid and a microscopic or chemical process due to the migration of a chemical species through the solid. The principle of virtual power is invoked to deduce the basic balances of the theory, namely the mechanical force balance and the transport balance for the chemical species. In combination with thermodynamically consistent constitutive relations, these balances generate the basic equations of the theory. Keeping in mind applications involving the swelling of polymer networks by liquids, a specialization of the theory is presented and applied to study the influences of mechanical and chemical interactions on equilibrium states and diffusive dynamical processes. It is shown that the possibility of a mechanically induced phase transition is governed by two parameters: the Flory interaction parameter and a parameter given by the product between the number of cross-linked units per unit reference volume and the molecular volume of the liquid molecule. As for diffusion, it is shown that the theory is able to describe the pressure-induced diffusion in swollen membranes. |
doi_str_mv | 10.1016/j.jmps.2010.01.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753742295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022509610000189</els_id><sourcerecordid>753742295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-dd5b25d1e6350330deb3fe76fd8552479a55d722145a098c74e93559ecc0c023</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhjOARCn8ASZvTAlnJ44biaWq-JIqsXS3XPvSOiRxsF2q_HtShZnppNP7vLp7kuSBQkaBlk9N1nRDyBhMC6AZQHWVLAAYSzlU5U1yG0IDABwEXSTHNYlHdH4ktfMkDKgtBtLZg1fRup7YnihS295GbEcSole2R0OCa60hZxuPRA1Da_Wcjo4Mrh079KTHeHb-i4Qztq3tD3fJda3agPd_c5nsXl92m_d0-_n2sVlvU52LMqbG8D3jhmKZc8hzMLjPaxRlbVacs0JUinMjGKMFV1CttCiwyjmvUGvQwPJl8jjXDt59nzBE2dmgpxNUj-4UpOC5KBir-JRkc1J7F4LHWg7edsqPkoK8iJSNvIiUF5ESqJxETtDzDOH0wo9FL8MkrNdorEcdpXH2P_wXSWeABQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753742295</pqid></control><display><type>article</type><title>A theory for species migration in a finitely strained solid with application to polymer network swelling</title><source>Elsevier ScienceDirect Journals</source><creator>Duda, Fernando P. ; Souza, Angela C. ; Fried, Eliot</creator><creatorcontrib>Duda, Fernando P. ; Souza, Angela C. ; Fried, Eliot</creatorcontrib><description>We present a theory for the behavior of a solid undergoing two interdependent processes, a macroscopic or mechanical process due to the deformation of the solid and a microscopic or chemical process due to the migration of a chemical species through the solid. The principle of virtual power is invoked to deduce the basic balances of the theory, namely the mechanical force balance and the transport balance for the chemical species. In combination with thermodynamically consistent constitutive relations, these balances generate the basic equations of the theory. Keeping in mind applications involving the swelling of polymer networks by liquids, a specialization of the theory is presented and applied to study the influences of mechanical and chemical interactions on equilibrium states and diffusive dynamical processes. It is shown that the possibility of a mechanically induced phase transition is governed by two parameters: the Flory interaction parameter and a parameter given by the product between the number of cross-linked units per unit reference volume and the molecular volume of the liquid molecule. As for diffusion, it is shown that the theory is able to describe the pressure-induced diffusion in swollen membranes.</description><identifier>ISSN: 0022-5096</identifier><identifier>DOI: 10.1016/j.jmps.2010.01.009</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Diffusion ; Interaction parameters ; Liquids ; Mathematical analysis ; Mechanochemistry ; Migration ; Networks ; Phase coexistence ; Swelling ; Transport</subject><ispartof>Journal of the mechanics and physics of solids, 2010-04, Vol.58 (4), p.515-529</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-dd5b25d1e6350330deb3fe76fd8552479a55d722145a098c74e93559ecc0c023</citedby><cites>FETCH-LOGICAL-c376t-dd5b25d1e6350330deb3fe76fd8552479a55d722145a098c74e93559ecc0c023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmps.2010.01.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Duda, Fernando P.</creatorcontrib><creatorcontrib>Souza, Angela C.</creatorcontrib><creatorcontrib>Fried, Eliot</creatorcontrib><title>A theory for species migration in a finitely strained solid with application to polymer network swelling</title><title>Journal of the mechanics and physics of solids</title><description>We present a theory for the behavior of a solid undergoing two interdependent processes, a macroscopic or mechanical process due to the deformation of the solid and a microscopic or chemical process due to the migration of a chemical species through the solid. The principle of virtual power is invoked to deduce the basic balances of the theory, namely the mechanical force balance and the transport balance for the chemical species. In combination with thermodynamically consistent constitutive relations, these balances generate the basic equations of the theory. Keeping in mind applications involving the swelling of polymer networks by liquids, a specialization of the theory is presented and applied to study the influences of mechanical and chemical interactions on equilibrium states and diffusive dynamical processes. It is shown that the possibility of a mechanically induced phase transition is governed by two parameters: the Flory interaction parameter and a parameter given by the product between the number of cross-linked units per unit reference volume and the molecular volume of the liquid molecule. As for diffusion, it is shown that the theory is able to describe the pressure-induced diffusion in swollen membranes.</description><subject>Diffusion</subject><subject>Interaction parameters</subject><subject>Liquids</subject><subject>Mathematical analysis</subject><subject>Mechanochemistry</subject><subject>Migration</subject><subject>Networks</subject><subject>Phase coexistence</subject><subject>Swelling</subject><subject>Transport</subject><issn>0022-5096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhjOARCn8ASZvTAlnJ44biaWq-JIqsXS3XPvSOiRxsF2q_HtShZnppNP7vLp7kuSBQkaBlk9N1nRDyBhMC6AZQHWVLAAYSzlU5U1yG0IDABwEXSTHNYlHdH4ktfMkDKgtBtLZg1fRup7YnihS295GbEcSole2R0OCa60hZxuPRA1Da_Wcjo4Mrh079KTHeHb-i4Qztq3tD3fJda3agPd_c5nsXl92m_d0-_n2sVlvU52LMqbG8D3jhmKZc8hzMLjPaxRlbVacs0JUinMjGKMFV1CttCiwyjmvUGvQwPJl8jjXDt59nzBE2dmgpxNUj-4UpOC5KBir-JRkc1J7F4LHWg7edsqPkoK8iJSNvIiUF5ESqJxETtDzDOH0wo9FL8MkrNdorEcdpXH2P_wXSWeABQ</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Duda, Fernando P.</creator><creator>Souza, Angela C.</creator><creator>Fried, Eliot</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20100401</creationdate><title>A theory for species migration in a finitely strained solid with application to polymer network swelling</title><author>Duda, Fernando P. ; Souza, Angela C. ; Fried, Eliot</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-dd5b25d1e6350330deb3fe76fd8552479a55d722145a098c74e93559ecc0c023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Diffusion</topic><topic>Interaction parameters</topic><topic>Liquids</topic><topic>Mathematical analysis</topic><topic>Mechanochemistry</topic><topic>Migration</topic><topic>Networks</topic><topic>Phase coexistence</topic><topic>Swelling</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duda, Fernando P.</creatorcontrib><creatorcontrib>Souza, Angela C.</creatorcontrib><creatorcontrib>Fried, Eliot</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the mechanics and physics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duda, Fernando P.</au><au>Souza, Angela C.</au><au>Fried, Eliot</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A theory for species migration in a finitely strained solid with application to polymer network swelling</atitle><jtitle>Journal of the mechanics and physics of solids</jtitle><date>2010-04-01</date><risdate>2010</risdate><volume>58</volume><issue>4</issue><spage>515</spage><epage>529</epage><pages>515-529</pages><issn>0022-5096</issn><abstract>We present a theory for the behavior of a solid undergoing two interdependent processes, a macroscopic or mechanical process due to the deformation of the solid and a microscopic or chemical process due to the migration of a chemical species through the solid. The principle of virtual power is invoked to deduce the basic balances of the theory, namely the mechanical force balance and the transport balance for the chemical species. In combination with thermodynamically consistent constitutive relations, these balances generate the basic equations of the theory. Keeping in mind applications involving the swelling of polymer networks by liquids, a specialization of the theory is presented and applied to study the influences of mechanical and chemical interactions on equilibrium states and diffusive dynamical processes. It is shown that the possibility of a mechanically induced phase transition is governed by two parameters: the Flory interaction parameter and a parameter given by the product between the number of cross-linked units per unit reference volume and the molecular volume of the liquid molecule. As for diffusion, it is shown that the theory is able to describe the pressure-induced diffusion in swollen membranes.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jmps.2010.01.009</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5096 |
ispartof | Journal of the mechanics and physics of solids, 2010-04, Vol.58 (4), p.515-529 |
issn | 0022-5096 |
language | eng |
recordid | cdi_proquest_miscellaneous_753742295 |
source | Elsevier ScienceDirect Journals |
subjects | Diffusion Interaction parameters Liquids Mathematical analysis Mechanochemistry Migration Networks Phase coexistence Swelling Transport |
title | A theory for species migration in a finitely strained solid with application to polymer network swelling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20theory%20for%20species%20migration%20in%20a%20finitely%20strained%20solid%20with%20application%20to%20polymer%20network%20swelling&rft.jtitle=Journal%20of%20the%20mechanics%20and%20physics%20of%20solids&rft.au=Duda,%20Fernando%20P.&rft.date=2010-04-01&rft.volume=58&rft.issue=4&rft.spage=515&rft.epage=529&rft.pages=515-529&rft.issn=0022-5096&rft_id=info:doi/10.1016/j.jmps.2010.01.009&rft_dat=%3Cproquest_cross%3E753742295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753742295&rft_id=info:pmid/&rft_els_id=S0022509610000189&rfr_iscdi=true |