Derivation of separation laws for cohesive models in the course of ductile fracture
The paper addresses the determination of the traction–separation law of the cohesive model on a micromechanical basis. For this task, a specific failure mechanism, i.e. ductile damage consisting of void nucleation, growth and coalescence, is investigated. An approach already described in the literat...
Gespeichert in:
Veröffentlicht in: | Engineering fracture mechanics 2009-07, Vol.76 (10), p.1450-1459 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1459 |
---|---|
container_issue | 10 |
container_start_page | 1450 |
container_title | Engineering fracture mechanics |
container_volume | 76 |
creator | Scheider, Ingo |
description | The paper addresses the determination of the traction–separation law of the cohesive model on a micromechanical basis. For this task, a specific failure mechanism, i.e. ductile damage consisting of void nucleation, growth and coalescence, is investigated. An approach already described in the literature is to transfer the deformation behaviour of the simplest representative volume element, i.e. a single voided unit cell, to the cohesive interface. After reviewing the existing approach, its main drawback, namely that the unit cell contains both, deformation and damage of a material point whereas the cohesive model should contain the material separation only, is addressed. A new approach is presented, in which the behaviour of a unit cell is partitioned in its elasto-plastic deformation and damage, and only the damage contribution is applied as the traction–separation law for the cohesive model. Instead of modelling the voided unit cell, a single element with Gurson type plastic potential for the damage has been employed as a reference for the behaviour at the microscale. A study with fracture specimens, C(T) and M(T), made of an engineering Aluminium alloy shows that the new approach exhibits a better transferability than the existing one. |
doi_str_mv | 10.1016/j.engfracmech.2008.12.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753742269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794408003226</els_id><sourcerecordid>753742269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-53656f01646281a3255d0c0f1b57c219a7528244df1ccf2d699b9e636c68eac83</originalsourceid><addsrcrecordid>eNqNkDtPwzAQgC0EEqXwH8KAmBJsx3GSEZWnVIkBmC33cqau0rjYSRH_HkepECOTz6fvXh8hl4xmjDJ5s8mw-zBewxZhnXFKq4zxjFJ5RGasKvO0zFlxTGaUshjXQpySsxA2lNJSVnRGXu_Q273uresSZ5KAO-2nX6u_QmKcT8CtMdg9JlvXYBsS2yX9GmN68AHHomaA3raYjGv0g8dzcmJ0G_Di8M7J-8P92-IpXb48Pi9ulymIXPRpkctCmniEkLxiOudF0VCghq2KEjirdVnwigvRGAZgeCPrelWjzCXICjVU-ZxcT3133n0OGHq1tQGwbXWHbgiqLPJScC7rSNYTCd6F4NGonbdb7b8Vo2r0qDbqj0c1elSMq-gx1l4dpugAuo1MBzb8NoiLciaoiNxi4qIj3Fv0KoDFDrCxHqFXjbP_mPYDFh6OpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753742269</pqid></control><display><type>article</type><title>Derivation of separation laws for cohesive models in the course of ductile fracture</title><source>Elsevier ScienceDirect Journals</source><creator>Scheider, Ingo</creator><creatorcontrib>Scheider, Ingo</creatorcontrib><description>The paper addresses the determination of the traction–separation law of the cohesive model on a micromechanical basis. For this task, a specific failure mechanism, i.e. ductile damage consisting of void nucleation, growth and coalescence, is investigated. An approach already described in the literature is to transfer the deformation behaviour of the simplest representative volume element, i.e. a single voided unit cell, to the cohesive interface. After reviewing the existing approach, its main drawback, namely that the unit cell contains both, deformation and damage of a material point whereas the cohesive model should contain the material separation only, is addressed. A new approach is presented, in which the behaviour of a unit cell is partitioned in its elasto-plastic deformation and damage, and only the damage contribution is applied as the traction–separation law for the cohesive model. Instead of modelling the voided unit cell, a single element with Gurson type plastic potential for the damage has been employed as a reference for the behaviour at the microscale. A study with fracture specimens, C(T) and M(T), made of an engineering Aluminium alloy shows that the new approach exhibits a better transferability than the existing one.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2008.12.006</identifier><identifier>CODEN: EFMEAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Cohesion ; Cohesive modelling ; Damage ; Deformation ; Ductile fracture ; Exact sciences and technology ; Fracture mechanics ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; GTN model ; Inelasticity (thermoplasticity, viscoplasticity...) ; Law ; Physics ; Separation ; Solid mechanics ; Structural and continuum mechanics ; Traction–separation law ; Unit cell ; Unit cells</subject><ispartof>Engineering fracture mechanics, 2009-07, Vol.76 (10), p.1450-1459</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-53656f01646281a3255d0c0f1b57c219a7528244df1ccf2d699b9e636c68eac83</citedby><cites>FETCH-LOGICAL-c434t-53656f01646281a3255d0c0f1b57c219a7528244df1ccf2d699b9e636c68eac83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013794408003226$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21921404$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Scheider, Ingo</creatorcontrib><title>Derivation of separation laws for cohesive models in the course of ductile fracture</title><title>Engineering fracture mechanics</title><description>The paper addresses the determination of the traction–separation law of the cohesive model on a micromechanical basis. For this task, a specific failure mechanism, i.e. ductile damage consisting of void nucleation, growth and coalescence, is investigated. An approach already described in the literature is to transfer the deformation behaviour of the simplest representative volume element, i.e. a single voided unit cell, to the cohesive interface. After reviewing the existing approach, its main drawback, namely that the unit cell contains both, deformation and damage of a material point whereas the cohesive model should contain the material separation only, is addressed. A new approach is presented, in which the behaviour of a unit cell is partitioned in its elasto-plastic deformation and damage, and only the damage contribution is applied as the traction–separation law for the cohesive model. Instead of modelling the voided unit cell, a single element with Gurson type plastic potential for the damage has been employed as a reference for the behaviour at the microscale. A study with fracture specimens, C(T) and M(T), made of an engineering Aluminium alloy shows that the new approach exhibits a better transferability than the existing one.</description><subject>Cohesion</subject><subject>Cohesive modelling</subject><subject>Damage</subject><subject>Deformation</subject><subject>Ductile fracture</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>GTN model</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Law</subject><subject>Physics</subject><subject>Separation</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Traction–separation law</subject><subject>Unit cell</subject><subject>Unit cells</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkDtPwzAQgC0EEqXwH8KAmBJsx3GSEZWnVIkBmC33cqau0rjYSRH_HkepECOTz6fvXh8hl4xmjDJ5s8mw-zBewxZhnXFKq4zxjFJ5RGasKvO0zFlxTGaUshjXQpySsxA2lNJSVnRGXu_Q273uresSZ5KAO-2nX6u_QmKcT8CtMdg9JlvXYBsS2yX9GmN68AHHomaA3raYjGv0g8dzcmJ0G_Di8M7J-8P92-IpXb48Pi9ulymIXPRpkctCmniEkLxiOudF0VCghq2KEjirdVnwigvRGAZgeCPrelWjzCXICjVU-ZxcT3133n0OGHq1tQGwbXWHbgiqLPJScC7rSNYTCd6F4NGonbdb7b8Vo2r0qDbqj0c1elSMq-gx1l4dpugAuo1MBzb8NoiLciaoiNxi4qIj3Fv0KoDFDrCxHqFXjbP_mPYDFh6OpA</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Scheider, Ingo</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20090701</creationdate><title>Derivation of separation laws for cohesive models in the course of ductile fracture</title><author>Scheider, Ingo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-53656f01646281a3255d0c0f1b57c219a7528244df1ccf2d699b9e636c68eac83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cohesion</topic><topic>Cohesive modelling</topic><topic>Damage</topic><topic>Deformation</topic><topic>Ductile fracture</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>GTN model</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Law</topic><topic>Physics</topic><topic>Separation</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Traction–separation law</topic><topic>Unit cell</topic><topic>Unit cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheider, Ingo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheider, Ingo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of separation laws for cohesive models in the course of ductile fracture</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2009-07-01</date><risdate>2009</risdate><volume>76</volume><issue>10</issue><spage>1450</spage><epage>1459</epage><pages>1450-1459</pages><issn>0013-7944</issn><eissn>1873-7315</eissn><coden>EFMEAH</coden><abstract>The paper addresses the determination of the traction–separation law of the cohesive model on a micromechanical basis. For this task, a specific failure mechanism, i.e. ductile damage consisting of void nucleation, growth and coalescence, is investigated. An approach already described in the literature is to transfer the deformation behaviour of the simplest representative volume element, i.e. a single voided unit cell, to the cohesive interface. After reviewing the existing approach, its main drawback, namely that the unit cell contains both, deformation and damage of a material point whereas the cohesive model should contain the material separation only, is addressed. A new approach is presented, in which the behaviour of a unit cell is partitioned in its elasto-plastic deformation and damage, and only the damage contribution is applied as the traction–separation law for the cohesive model. Instead of modelling the voided unit cell, a single element with Gurson type plastic potential for the damage has been employed as a reference for the behaviour at the microscale. A study with fracture specimens, C(T) and M(T), made of an engineering Aluminium alloy shows that the new approach exhibits a better transferability than the existing one.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2008.12.006</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-7944 |
ispartof | Engineering fracture mechanics, 2009-07, Vol.76 (10), p.1450-1459 |
issn | 0013-7944 1873-7315 |
language | eng |
recordid | cdi_proquest_miscellaneous_753742269 |
source | Elsevier ScienceDirect Journals |
subjects | Cohesion Cohesive modelling Damage Deformation Ductile fracture Exact sciences and technology Fracture mechanics Fracture mechanics (crack, fatigue, damage...) Fundamental areas of phenomenology (including applications) GTN model Inelasticity (thermoplasticity, viscoplasticity...) Law Physics Separation Solid mechanics Structural and continuum mechanics Traction–separation law Unit cell Unit cells |
title | Derivation of separation laws for cohesive models in the course of ductile fracture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A34%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20separation%20laws%20for%20cohesive%20models%20in%20the%20course%20of%20ductile%20fracture&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Scheider,%20Ingo&rft.date=2009-07-01&rft.volume=76&rft.issue=10&rft.spage=1450&rft.epage=1459&rft.pages=1450-1459&rft.issn=0013-7944&rft.eissn=1873-7315&rft.coden=EFMEAH&rft_id=info:doi/10.1016/j.engfracmech.2008.12.006&rft_dat=%3Cproquest_cross%3E753742269%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753742269&rft_id=info:pmid/&rft_els_id=S0013794408003226&rfr_iscdi=true |