Derivation of separation laws for cohesive models in the course of ductile fracture

The paper addresses the determination of the traction–separation law of the cohesive model on a micromechanical basis. For this task, a specific failure mechanism, i.e. ductile damage consisting of void nucleation, growth and coalescence, is investigated. An approach already described in the literat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 2009-07, Vol.76 (10), p.1450-1459
1. Verfasser: Scheider, Ingo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1459
container_issue 10
container_start_page 1450
container_title Engineering fracture mechanics
container_volume 76
creator Scheider, Ingo
description The paper addresses the determination of the traction–separation law of the cohesive model on a micromechanical basis. For this task, a specific failure mechanism, i.e. ductile damage consisting of void nucleation, growth and coalescence, is investigated. An approach already described in the literature is to transfer the deformation behaviour of the simplest representative volume element, i.e. a single voided unit cell, to the cohesive interface. After reviewing the existing approach, its main drawback, namely that the unit cell contains both, deformation and damage of a material point whereas the cohesive model should contain the material separation only, is addressed. A new approach is presented, in which the behaviour of a unit cell is partitioned in its elasto-plastic deformation and damage, and only the damage contribution is applied as the traction–separation law for the cohesive model. Instead of modelling the voided unit cell, a single element with Gurson type plastic potential for the damage has been employed as a reference for the behaviour at the microscale. A study with fracture specimens, C(T) and M(T), made of an engineering Aluminium alloy shows that the new approach exhibits a better transferability than the existing one.
doi_str_mv 10.1016/j.engfracmech.2008.12.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753742269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794408003226</els_id><sourcerecordid>753742269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-53656f01646281a3255d0c0f1b57c219a7528244df1ccf2d699b9e636c68eac83</originalsourceid><addsrcrecordid>eNqNkDtPwzAQgC0EEqXwH8KAmBJsx3GSEZWnVIkBmC33cqau0rjYSRH_HkepECOTz6fvXh8hl4xmjDJ5s8mw-zBewxZhnXFKq4zxjFJ5RGasKvO0zFlxTGaUshjXQpySsxA2lNJSVnRGXu_Q273uresSZ5KAO-2nX6u_QmKcT8CtMdg9JlvXYBsS2yX9GmN68AHHomaA3raYjGv0g8dzcmJ0G_Di8M7J-8P92-IpXb48Pi9ulymIXPRpkctCmniEkLxiOudF0VCghq2KEjirdVnwigvRGAZgeCPrelWjzCXICjVU-ZxcT3133n0OGHq1tQGwbXWHbgiqLPJScC7rSNYTCd6F4NGonbdb7b8Vo2r0qDbqj0c1elSMq-gx1l4dpugAuo1MBzb8NoiLciaoiNxi4qIj3Fv0KoDFDrCxHqFXjbP_mPYDFh6OpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753742269</pqid></control><display><type>article</type><title>Derivation of separation laws for cohesive models in the course of ductile fracture</title><source>Elsevier ScienceDirect Journals</source><creator>Scheider, Ingo</creator><creatorcontrib>Scheider, Ingo</creatorcontrib><description>The paper addresses the determination of the traction–separation law of the cohesive model on a micromechanical basis. For this task, a specific failure mechanism, i.e. ductile damage consisting of void nucleation, growth and coalescence, is investigated. An approach already described in the literature is to transfer the deformation behaviour of the simplest representative volume element, i.e. a single voided unit cell, to the cohesive interface. After reviewing the existing approach, its main drawback, namely that the unit cell contains both, deformation and damage of a material point whereas the cohesive model should contain the material separation only, is addressed. A new approach is presented, in which the behaviour of a unit cell is partitioned in its elasto-plastic deformation and damage, and only the damage contribution is applied as the traction–separation law for the cohesive model. Instead of modelling the voided unit cell, a single element with Gurson type plastic potential for the damage has been employed as a reference for the behaviour at the microscale. A study with fracture specimens, C(T) and M(T), made of an engineering Aluminium alloy shows that the new approach exhibits a better transferability than the existing one.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2008.12.006</identifier><identifier>CODEN: EFMEAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Cohesion ; Cohesive modelling ; Damage ; Deformation ; Ductile fracture ; Exact sciences and technology ; Fracture mechanics ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; GTN model ; Inelasticity (thermoplasticity, viscoplasticity...) ; Law ; Physics ; Separation ; Solid mechanics ; Structural and continuum mechanics ; Traction–separation law ; Unit cell ; Unit cells</subject><ispartof>Engineering fracture mechanics, 2009-07, Vol.76 (10), p.1450-1459</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-53656f01646281a3255d0c0f1b57c219a7528244df1ccf2d699b9e636c68eac83</citedby><cites>FETCH-LOGICAL-c434t-53656f01646281a3255d0c0f1b57c219a7528244df1ccf2d699b9e636c68eac83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013794408003226$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21921404$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Scheider, Ingo</creatorcontrib><title>Derivation of separation laws for cohesive models in the course of ductile fracture</title><title>Engineering fracture mechanics</title><description>The paper addresses the determination of the traction–separation law of the cohesive model on a micromechanical basis. For this task, a specific failure mechanism, i.e. ductile damage consisting of void nucleation, growth and coalescence, is investigated. An approach already described in the literature is to transfer the deformation behaviour of the simplest representative volume element, i.e. a single voided unit cell, to the cohesive interface. After reviewing the existing approach, its main drawback, namely that the unit cell contains both, deformation and damage of a material point whereas the cohesive model should contain the material separation only, is addressed. A new approach is presented, in which the behaviour of a unit cell is partitioned in its elasto-plastic deformation and damage, and only the damage contribution is applied as the traction–separation law for the cohesive model. Instead of modelling the voided unit cell, a single element with Gurson type plastic potential for the damage has been employed as a reference for the behaviour at the microscale. A study with fracture specimens, C(T) and M(T), made of an engineering Aluminium alloy shows that the new approach exhibits a better transferability than the existing one.</description><subject>Cohesion</subject><subject>Cohesive modelling</subject><subject>Damage</subject><subject>Deformation</subject><subject>Ductile fracture</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>GTN model</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Law</subject><subject>Physics</subject><subject>Separation</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Traction–separation law</subject><subject>Unit cell</subject><subject>Unit cells</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkDtPwzAQgC0EEqXwH8KAmBJsx3GSEZWnVIkBmC33cqau0rjYSRH_HkepECOTz6fvXh8hl4xmjDJ5s8mw-zBewxZhnXFKq4zxjFJ5RGasKvO0zFlxTGaUshjXQpySsxA2lNJSVnRGXu_Q273uresSZ5KAO-2nX6u_QmKcT8CtMdg9JlvXYBsS2yX9GmN68AHHomaA3raYjGv0g8dzcmJ0G_Di8M7J-8P92-IpXb48Pi9ulymIXPRpkctCmniEkLxiOudF0VCghq2KEjirdVnwigvRGAZgeCPrelWjzCXICjVU-ZxcT3133n0OGHq1tQGwbXWHbgiqLPJScC7rSNYTCd6F4NGonbdb7b8Vo2r0qDbqj0c1elSMq-gx1l4dpugAuo1MBzb8NoiLciaoiNxi4qIj3Fv0KoDFDrCxHqFXjbP_mPYDFh6OpA</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Scheider, Ingo</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20090701</creationdate><title>Derivation of separation laws for cohesive models in the course of ductile fracture</title><author>Scheider, Ingo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-53656f01646281a3255d0c0f1b57c219a7528244df1ccf2d699b9e636c68eac83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cohesion</topic><topic>Cohesive modelling</topic><topic>Damage</topic><topic>Deformation</topic><topic>Ductile fracture</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>GTN model</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Law</topic><topic>Physics</topic><topic>Separation</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Traction–separation law</topic><topic>Unit cell</topic><topic>Unit cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheider, Ingo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheider, Ingo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of separation laws for cohesive models in the course of ductile fracture</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2009-07-01</date><risdate>2009</risdate><volume>76</volume><issue>10</issue><spage>1450</spage><epage>1459</epage><pages>1450-1459</pages><issn>0013-7944</issn><eissn>1873-7315</eissn><coden>EFMEAH</coden><abstract>The paper addresses the determination of the traction–separation law of the cohesive model on a micromechanical basis. For this task, a specific failure mechanism, i.e. ductile damage consisting of void nucleation, growth and coalescence, is investigated. An approach already described in the literature is to transfer the deformation behaviour of the simplest representative volume element, i.e. a single voided unit cell, to the cohesive interface. After reviewing the existing approach, its main drawback, namely that the unit cell contains both, deformation and damage of a material point whereas the cohesive model should contain the material separation only, is addressed. A new approach is presented, in which the behaviour of a unit cell is partitioned in its elasto-plastic deformation and damage, and only the damage contribution is applied as the traction–separation law for the cohesive model. Instead of modelling the voided unit cell, a single element with Gurson type plastic potential for the damage has been employed as a reference for the behaviour at the microscale. A study with fracture specimens, C(T) and M(T), made of an engineering Aluminium alloy shows that the new approach exhibits a better transferability than the existing one.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2008.12.006</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 2009-07, Vol.76 (10), p.1450-1459
issn 0013-7944
1873-7315
language eng
recordid cdi_proquest_miscellaneous_753742269
source Elsevier ScienceDirect Journals
subjects Cohesion
Cohesive modelling
Damage
Deformation
Ductile fracture
Exact sciences and technology
Fracture mechanics
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
GTN model
Inelasticity (thermoplasticity, viscoplasticity...)
Law
Physics
Separation
Solid mechanics
Structural and continuum mechanics
Traction–separation law
Unit cell
Unit cells
title Derivation of separation laws for cohesive models in the course of ductile fracture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A34%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20separation%20laws%20for%20cohesive%20models%20in%20the%20course%20of%20ductile%20fracture&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Scheider,%20Ingo&rft.date=2009-07-01&rft.volume=76&rft.issue=10&rft.spage=1450&rft.epage=1459&rft.pages=1450-1459&rft.issn=0013-7944&rft.eissn=1873-7315&rft.coden=EFMEAH&rft_id=info:doi/10.1016/j.engfracmech.2008.12.006&rft_dat=%3Cproquest_cross%3E753742269%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753742269&rft_id=info:pmid/&rft_els_id=S0013794408003226&rfr_iscdi=true