Self-organization phenomena at semiconductor electrodes

Anodically dissolving semiconductor electrodes such as Si, Ge, GaAs, InP, or GaP exhibit a number of self-organization phenomena such as current oscillations in time and/or in space; some phenomena of this kind are also found during the anodic formation of porous metal oxides. Current oscillations i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2009-12, Vol.55 (2), p.327-339
Hauptverfasser: Föll, H., Leisner, M., Cojocaru, A., Carstensen, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 339
container_issue 2
container_start_page 327
container_title Electrochimica acta
container_volume 55
creator Föll, H.
Leisner, M.
Cojocaru, A.
Carstensen, J.
description Anodically dissolving semiconductor electrodes such as Si, Ge, GaAs, InP, or GaP exhibit a number of self-organization phenomena such as current oscillations in time and/or in space; some phenomena of this kind are also found during the anodic formation of porous metal oxides. Current oscillations in space are expressed in correlated pore growth and other effects like pore diameter oscillation; this will be introduced and discussed in some detail. Some less well-known effects like self-induced growth mode transitions or pore density oscillations are also included. The paper endeavors to sort through the various self-organization phenomena observed so far and to look for underlying principles that transcend semiconductor-specific dissolution chemistry. Intrinsic time and length scales provide one such principle and this will be discussed with emphasis on the so-called current burst model originally developed for current oscillations in time.
doi_str_mv 10.1016/j.electacta.2009.03.076
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753741613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468609004952</els_id><sourcerecordid>753741613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-a5318cc4c8a415d9d807819d2dd865a4644fc5a1062ed96706c0b23b43f5846a3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKu_wdmIqxmTyXtZii8QXKjrkCZ3NGU6qclU0F9vaku3woW7-c459x6ELgluCCbiZtlAD260ZZoWY91g2mApjtCEKElrqrg-RhOMCa2ZUOIUneW8xLggEk-QfIG-q2N6t0P4sWOIQ7X-gCGuYLCVHasMq-Di4DdujKn6S0rRQz5HJ53tM1zs9xS93d2-zh_qp-f7x_nsqXaM0bG2nBLlHHPKMsK99gpLRbRvvVeCWyYY6xy3BIsWvC4XCYcXLV0w2nHFhKVTdL3zXaf4uYE8mlXIDvreDhA32UhOJSOC0ELKHelSzDlBZ9YprGz6NgSbbVNmaQ5NmW1TBlNTaijKq32Gzc72XbKDC_kgb1umteaqcLMdB-XhrwDJZBdgcOBDKr7Gx_Bv1i9CLYK-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753741613</pqid></control><display><type>article</type><title>Self-organization phenomena at semiconductor electrodes</title><source>Access via ScienceDirect (Elsevier)</source><creator>Föll, H. ; Leisner, M. ; Cojocaru, A. ; Carstensen, J.</creator><creatorcontrib>Föll, H. ; Leisner, M. ; Cojocaru, A. ; Carstensen, J.</creatorcontrib><description>Anodically dissolving semiconductor electrodes such as Si, Ge, GaAs, InP, or GaP exhibit a number of self-organization phenomena such as current oscillations in time and/or in space; some phenomena of this kind are also found during the anodic formation of porous metal oxides. Current oscillations in space are expressed in correlated pore growth and other effects like pore diameter oscillation; this will be introduced and discussed in some detail. Some less well-known effects like self-induced growth mode transitions or pore density oscillations are also included. The paper endeavors to sort through the various self-organization phenomena observed so far and to look for underlying principles that transcend semiconductor-specific dissolution chemistry. Intrinsic time and length scales provide one such principle and this will be discussed with emphasis on the so-called current burst model originally developed for current oscillations in time.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2009.03.076</identifier><identifier>CODEN: ELCAAV</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Chemistry ; Density ; Dissolution ; Electrochemistry ; Electrochemistry of semiconductors ; Electrodes ; Electrodes: preparations and properties ; Exact sciences and technology ; Gallium arsenide ; General and physical chemistry ; Germanium ; Oscillations ; Other electrodes ; Pore formation ; Porosity ; Self-induced oscillations ; Self-organization ; Semiconductors ; Silicon</subject><ispartof>Electrochimica acta, 2009-12, Vol.55 (2), p.327-339</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-a5318cc4c8a415d9d807819d2dd865a4644fc5a1062ed96706c0b23b43f5846a3</citedby><cites>FETCH-LOGICAL-c443t-a5318cc4c8a415d9d807819d2dd865a4644fc5a1062ed96706c0b23b43f5846a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2009.03.076$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22499958$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Föll, H.</creatorcontrib><creatorcontrib>Leisner, M.</creatorcontrib><creatorcontrib>Cojocaru, A.</creatorcontrib><creatorcontrib>Carstensen, J.</creatorcontrib><title>Self-organization phenomena at semiconductor electrodes</title><title>Electrochimica acta</title><description>Anodically dissolving semiconductor electrodes such as Si, Ge, GaAs, InP, or GaP exhibit a number of self-organization phenomena such as current oscillations in time and/or in space; some phenomena of this kind are also found during the anodic formation of porous metal oxides. Current oscillations in space are expressed in correlated pore growth and other effects like pore diameter oscillation; this will be introduced and discussed in some detail. Some less well-known effects like self-induced growth mode transitions or pore density oscillations are also included. The paper endeavors to sort through the various self-organization phenomena observed so far and to look for underlying principles that transcend semiconductor-specific dissolution chemistry. Intrinsic time and length scales provide one such principle and this will be discussed with emphasis on the so-called current burst model originally developed for current oscillations in time.</description><subject>Chemistry</subject><subject>Density</subject><subject>Dissolution</subject><subject>Electrochemistry</subject><subject>Electrochemistry of semiconductors</subject><subject>Electrodes</subject><subject>Electrodes: preparations and properties</subject><subject>Exact sciences and technology</subject><subject>Gallium arsenide</subject><subject>General and physical chemistry</subject><subject>Germanium</subject><subject>Oscillations</subject><subject>Other electrodes</subject><subject>Pore formation</subject><subject>Porosity</subject><subject>Self-induced oscillations</subject><subject>Self-organization</subject><subject>Semiconductors</subject><subject>Silicon</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKu_wdmIqxmTyXtZii8QXKjrkCZ3NGU6qclU0F9vaku3woW7-c459x6ELgluCCbiZtlAD260ZZoWY91g2mApjtCEKElrqrg-RhOMCa2ZUOIUneW8xLggEk-QfIG-q2N6t0P4sWOIQ7X-gCGuYLCVHasMq-Di4DdujKn6S0rRQz5HJ53tM1zs9xS93d2-zh_qp-f7x_nsqXaM0bG2nBLlHHPKMsK99gpLRbRvvVeCWyYY6xy3BIsWvC4XCYcXLV0w2nHFhKVTdL3zXaf4uYE8mlXIDvreDhA32UhOJSOC0ELKHelSzDlBZ9YprGz6NgSbbVNmaQ5NmW1TBlNTaijKq32Gzc72XbKDC_kgb1umteaqcLMdB-XhrwDJZBdgcOBDKr7Gx_Bv1i9CLYK-</recordid><startdate>20091230</startdate><enddate>20091230</enddate><creator>Föll, H.</creator><creator>Leisner, M.</creator><creator>Cojocaru, A.</creator><creator>Carstensen, J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20091230</creationdate><title>Self-organization phenomena at semiconductor electrodes</title><author>Föll, H. ; Leisner, M. ; Cojocaru, A. ; Carstensen, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-a5318cc4c8a415d9d807819d2dd865a4644fc5a1062ed96706c0b23b43f5846a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Chemistry</topic><topic>Density</topic><topic>Dissolution</topic><topic>Electrochemistry</topic><topic>Electrochemistry of semiconductors</topic><topic>Electrodes</topic><topic>Electrodes: preparations and properties</topic><topic>Exact sciences and technology</topic><topic>Gallium arsenide</topic><topic>General and physical chemistry</topic><topic>Germanium</topic><topic>Oscillations</topic><topic>Other electrodes</topic><topic>Pore formation</topic><topic>Porosity</topic><topic>Self-induced oscillations</topic><topic>Self-organization</topic><topic>Semiconductors</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Föll, H.</creatorcontrib><creatorcontrib>Leisner, M.</creatorcontrib><creatorcontrib>Cojocaru, A.</creatorcontrib><creatorcontrib>Carstensen, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Föll, H.</au><au>Leisner, M.</au><au>Cojocaru, A.</au><au>Carstensen, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-organization phenomena at semiconductor electrodes</atitle><jtitle>Electrochimica acta</jtitle><date>2009-12-30</date><risdate>2009</risdate><volume>55</volume><issue>2</issue><spage>327</spage><epage>339</epage><pages>327-339</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><coden>ELCAAV</coden><abstract>Anodically dissolving semiconductor electrodes such as Si, Ge, GaAs, InP, or GaP exhibit a number of self-organization phenomena such as current oscillations in time and/or in space; some phenomena of this kind are also found during the anodic formation of porous metal oxides. Current oscillations in space are expressed in correlated pore growth and other effects like pore diameter oscillation; this will be introduced and discussed in some detail. Some less well-known effects like self-induced growth mode transitions or pore density oscillations are also included. The paper endeavors to sort through the various self-organization phenomena observed so far and to look for underlying principles that transcend semiconductor-specific dissolution chemistry. Intrinsic time and length scales provide one such principle and this will be discussed with emphasis on the so-called current burst model originally developed for current oscillations in time.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2009.03.076</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2009-12, Vol.55 (2), p.327-339
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_miscellaneous_753741613
source Access via ScienceDirect (Elsevier)
subjects Chemistry
Density
Dissolution
Electrochemistry
Electrochemistry of semiconductors
Electrodes
Electrodes: preparations and properties
Exact sciences and technology
Gallium arsenide
General and physical chemistry
Germanium
Oscillations
Other electrodes
Pore formation
Porosity
Self-induced oscillations
Self-organization
Semiconductors
Silicon
title Self-organization phenomena at semiconductor electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-organization%20phenomena%20at%20semiconductor%20electrodes&rft.jtitle=Electrochimica%20acta&rft.au=F%C3%B6ll,%20H.&rft.date=2009-12-30&rft.volume=55&rft.issue=2&rft.spage=327&rft.epage=339&rft.pages=327-339&rft.issn=0013-4686&rft.eissn=1873-3859&rft.coden=ELCAAV&rft_id=info:doi/10.1016/j.electacta.2009.03.076&rft_dat=%3Cproquest_cross%3E753741613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753741613&rft_id=info:pmid/&rft_els_id=S0013468609004952&rfr_iscdi=true