Finite element simulation of wave propagation in an axisymmetric bar
An accurate solution for high-frequency pulse propagation in an axisymmetric elastic bar is obtained using a new finite element technique that yields accurate non-oscillatory solutions for wave propagation problems in solids. The solution of the problem is very important for the understanding of dyn...
Gespeichert in:
Veröffentlicht in: | Journal of sound and vibration 2010-07, Vol.329 (14), p.2851-2872 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2872 |
---|---|
container_issue | 14 |
container_start_page | 2851 |
container_title | Journal of sound and vibration |
container_volume | 329 |
creator | Idesman, A.V. Subramanian, K. Schmidt, M. Foley, J.R. Tu, Y. Sierakowski, R.L. |
description | An accurate solution for high-frequency pulse propagation in an axisymmetric elastic bar is obtained using a new finite element technique that yields accurate non-oscillatory solutions for wave propagation problems in solids. The solution of the problem is very important for the understanding of dynamics experiments in the split Hopkinson pressure bar (SHPB). In contrast to known approaches, no additional assumptions are necessary for the accurate solution of the considered problem. The new solution helps to elucidate the complicated distribution of parameters during high-frequency pulse propagation down the bar as well as to estimate the applicability of the traditional dispersion correction used in the literature for the analysis of wave propagation in a finite bar. Due to the dimensionless formulation of the problem, the numerical results obtained depend on Poisson's ratio, the length of the bar and the pulse frequency, and are independent of Young's modulus, the density and the radius of the bar. |
doi_str_mv | 10.1016/j.jsv.2010.01.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753741451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X10000647</els_id><sourcerecordid>753741451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-ae7d9895c0f5387e761ecddf1183d4abbb26e8eff34336c12caaf10d150e26c93</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNtexNOuM8l-4kmqVaHgRcFbyGYnkmU_arKt9t8bafEoDAwzPO98vIxdIiQImN-0Seu3CYdQAybA8YjNEKosLrO8PGYzAM7jNIf3U3bmfQsAVSrSGbtf2sFOFFFHPQ1T5G2_6dRkxyEaTfSlthSt3bhWH_ueHSIV4tv6Xd_T5KyOauXO2YlRnaeLQ56zt-XD6-IpXr08Pi_uVrEWWTXFioqmKqtMg8lEWVCRI-mmMYilaFJV1zXPqSRjRCpErpFrpQxCgxkQz3Ul5ux6Pzec9LkhP8neek1dpwYaN14WmShSTDMMJO5J7UbvHRm5drZXbicR5K9hspXBMPlrmASUwbCguTpMV16rzjg1aOv_hJznUKRFGbjbPUfh1a0lJ722NGhqrCM9yWa0_2z5ATARgTI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753741451</pqid></control><display><type>article</type><title>Finite element simulation of wave propagation in an axisymmetric bar</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Idesman, A.V. ; Subramanian, K. ; Schmidt, M. ; Foley, J.R. ; Tu, Y. ; Sierakowski, R.L.</creator><creatorcontrib>Idesman, A.V. ; Subramanian, K. ; Schmidt, M. ; Foley, J.R. ; Tu, Y. ; Sierakowski, R.L.</creatorcontrib><description>An accurate solution for high-frequency pulse propagation in an axisymmetric elastic bar is obtained using a new finite element technique that yields accurate non-oscillatory solutions for wave propagation problems in solids. The solution of the problem is very important for the understanding of dynamics experiments in the split Hopkinson pressure bar (SHPB). In contrast to known approaches, no additional assumptions are necessary for the accurate solution of the considered problem. The new solution helps to elucidate the complicated distribution of parameters during high-frequency pulse propagation down the bar as well as to estimate the applicability of the traditional dispersion correction used in the literature for the analysis of wave propagation in a finite bar. Due to the dimensionless formulation of the problem, the numerical results obtained depend on Poisson's ratio, the length of the bar and the pulse frequency, and are independent of Young's modulus, the density and the radius of the bar.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2010.01.021</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Axisymmetric ; Density ; Dispersions ; Exact sciences and technology ; Finite element method ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematical models ; Physics ; Pulse propagation ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Wave propagation</subject><ispartof>Journal of sound and vibration, 2010-07, Vol.329 (14), p.2851-2872</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-ae7d9895c0f5387e761ecddf1183d4abbb26e8eff34336c12caaf10d150e26c93</citedby><cites>FETCH-LOGICAL-c359t-ae7d9895c0f5387e761ecddf1183d4abbb26e8eff34336c12caaf10d150e26c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2010.01.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22607478$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Idesman, A.V.</creatorcontrib><creatorcontrib>Subramanian, K.</creatorcontrib><creatorcontrib>Schmidt, M.</creatorcontrib><creatorcontrib>Foley, J.R.</creatorcontrib><creatorcontrib>Tu, Y.</creatorcontrib><creatorcontrib>Sierakowski, R.L.</creatorcontrib><title>Finite element simulation of wave propagation in an axisymmetric bar</title><title>Journal of sound and vibration</title><description>An accurate solution for high-frequency pulse propagation in an axisymmetric elastic bar is obtained using a new finite element technique that yields accurate non-oscillatory solutions for wave propagation problems in solids. The solution of the problem is very important for the understanding of dynamics experiments in the split Hopkinson pressure bar (SHPB). In contrast to known approaches, no additional assumptions are necessary for the accurate solution of the considered problem. The new solution helps to elucidate the complicated distribution of parameters during high-frequency pulse propagation down the bar as well as to estimate the applicability of the traditional dispersion correction used in the literature for the analysis of wave propagation in a finite bar. Due to the dimensionless formulation of the problem, the numerical results obtained depend on Poisson's ratio, the length of the bar and the pulse frequency, and are independent of Young's modulus, the density and the radius of the bar.</description><subject>Axisymmetric</subject><subject>Density</subject><subject>Dispersions</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Pulse propagation</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Wave propagation</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNtexNOuM8l-4kmqVaHgRcFbyGYnkmU_arKt9t8bafEoDAwzPO98vIxdIiQImN-0Seu3CYdQAybA8YjNEKosLrO8PGYzAM7jNIf3U3bmfQsAVSrSGbtf2sFOFFFHPQ1T5G2_6dRkxyEaTfSlthSt3bhWH_ueHSIV4tv6Xd_T5KyOauXO2YlRnaeLQ56zt-XD6-IpXr08Pi_uVrEWWTXFioqmKqtMg8lEWVCRI-mmMYilaFJV1zXPqSRjRCpErpFrpQxCgxkQz3Ul5ux6Pzec9LkhP8neek1dpwYaN14WmShSTDMMJO5J7UbvHRm5drZXbicR5K9hspXBMPlrmASUwbCguTpMV16rzjg1aOv_hJznUKRFGbjbPUfh1a0lJ722NGhqrCM9yWa0_2z5ATARgTI</recordid><startdate>20100705</startdate><enddate>20100705</enddate><creator>Idesman, A.V.</creator><creator>Subramanian, K.</creator><creator>Schmidt, M.</creator><creator>Foley, J.R.</creator><creator>Tu, Y.</creator><creator>Sierakowski, R.L.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20100705</creationdate><title>Finite element simulation of wave propagation in an axisymmetric bar</title><author>Idesman, A.V. ; Subramanian, K. ; Schmidt, M. ; Foley, J.R. ; Tu, Y. ; Sierakowski, R.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-ae7d9895c0f5387e761ecddf1183d4abbb26e8eff34336c12caaf10d150e26c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Axisymmetric</topic><topic>Density</topic><topic>Dispersions</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Pulse propagation</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Idesman, A.V.</creatorcontrib><creatorcontrib>Subramanian, K.</creatorcontrib><creatorcontrib>Schmidt, M.</creatorcontrib><creatorcontrib>Foley, J.R.</creatorcontrib><creatorcontrib>Tu, Y.</creatorcontrib><creatorcontrib>Sierakowski, R.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Idesman, A.V.</au><au>Subramanian, K.</au><au>Schmidt, M.</au><au>Foley, J.R.</au><au>Tu, Y.</au><au>Sierakowski, R.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element simulation of wave propagation in an axisymmetric bar</atitle><jtitle>Journal of sound and vibration</jtitle><date>2010-07-05</date><risdate>2010</risdate><volume>329</volume><issue>14</issue><spage>2851</spage><epage>2872</epage><pages>2851-2872</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>An accurate solution for high-frequency pulse propagation in an axisymmetric elastic bar is obtained using a new finite element technique that yields accurate non-oscillatory solutions for wave propagation problems in solids. The solution of the problem is very important for the understanding of dynamics experiments in the split Hopkinson pressure bar (SHPB). In contrast to known approaches, no additional assumptions are necessary for the accurate solution of the considered problem. The new solution helps to elucidate the complicated distribution of parameters during high-frequency pulse propagation down the bar as well as to estimate the applicability of the traditional dispersion correction used in the literature for the analysis of wave propagation in a finite bar. Due to the dimensionless formulation of the problem, the numerical results obtained depend on Poisson's ratio, the length of the bar and the pulse frequency, and are independent of Young's modulus, the density and the radius of the bar.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2010.01.021</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-460X |
ispartof | Journal of sound and vibration, 2010-07, Vol.329 (14), p.2851-2872 |
issn | 0022-460X 1095-8568 |
language | eng |
recordid | cdi_proquest_miscellaneous_753741451 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Axisymmetric Density Dispersions Exact sciences and technology Finite element method Fundamental areas of phenomenology (including applications) Mathematical analysis Mathematical models Physics Pulse propagation Solid mechanics Static elasticity (thermoelasticity...) Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) Wave propagation |
title | Finite element simulation of wave propagation in an axisymmetric bar |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20simulation%20of%20wave%20propagation%20in%20an%20axisymmetric%20bar&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Idesman,%20A.V.&rft.date=2010-07-05&rft.volume=329&rft.issue=14&rft.spage=2851&rft.epage=2872&rft.pages=2851-2872&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1016/j.jsv.2010.01.021&rft_dat=%3Cproquest_cross%3E753741451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753741451&rft_id=info:pmid/&rft_els_id=S0022460X10000647&rfr_iscdi=true |