Finite element simulation of wave propagation in an axisymmetric bar

An accurate solution for high-frequency pulse propagation in an axisymmetric elastic bar is obtained using a new finite element technique that yields accurate non-oscillatory solutions for wave propagation problems in solids. The solution of the problem is very important for the understanding of dyn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2010-07, Vol.329 (14), p.2851-2872
Hauptverfasser: Idesman, A.V., Subramanian, K., Schmidt, M., Foley, J.R., Tu, Y., Sierakowski, R.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2872
container_issue 14
container_start_page 2851
container_title Journal of sound and vibration
container_volume 329
creator Idesman, A.V.
Subramanian, K.
Schmidt, M.
Foley, J.R.
Tu, Y.
Sierakowski, R.L.
description An accurate solution for high-frequency pulse propagation in an axisymmetric elastic bar is obtained using a new finite element technique that yields accurate non-oscillatory solutions for wave propagation problems in solids. The solution of the problem is very important for the understanding of dynamics experiments in the split Hopkinson pressure bar (SHPB). In contrast to known approaches, no additional assumptions are necessary for the accurate solution of the considered problem. The new solution helps to elucidate the complicated distribution of parameters during high-frequency pulse propagation down the bar as well as to estimate the applicability of the traditional dispersion correction used in the literature for the analysis of wave propagation in a finite bar. Due to the dimensionless formulation of the problem, the numerical results obtained depend on Poisson's ratio, the length of the bar and the pulse frequency, and are independent of Young's modulus, the density and the radius of the bar.
doi_str_mv 10.1016/j.jsv.2010.01.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753741451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X10000647</els_id><sourcerecordid>753741451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-ae7d9895c0f5387e761ecddf1183d4abbb26e8eff34336c12caaf10d150e26c93</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNtexNOuM8l-4kmqVaHgRcFbyGYnkmU_arKt9t8bafEoDAwzPO98vIxdIiQImN-0Seu3CYdQAybA8YjNEKosLrO8PGYzAM7jNIf3U3bmfQsAVSrSGbtf2sFOFFFHPQ1T5G2_6dRkxyEaTfSlthSt3bhWH_ueHSIV4tv6Xd_T5KyOauXO2YlRnaeLQ56zt-XD6-IpXr08Pi_uVrEWWTXFioqmKqtMg8lEWVCRI-mmMYilaFJV1zXPqSRjRCpErpFrpQxCgxkQz3Ul5ux6Pzec9LkhP8neek1dpwYaN14WmShSTDMMJO5J7UbvHRm5drZXbicR5K9hspXBMPlrmASUwbCguTpMV16rzjg1aOv_hJznUKRFGbjbPUfh1a0lJ722NGhqrCM9yWa0_2z5ATARgTI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753741451</pqid></control><display><type>article</type><title>Finite element simulation of wave propagation in an axisymmetric bar</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Idesman, A.V. ; Subramanian, K. ; Schmidt, M. ; Foley, J.R. ; Tu, Y. ; Sierakowski, R.L.</creator><creatorcontrib>Idesman, A.V. ; Subramanian, K. ; Schmidt, M. ; Foley, J.R. ; Tu, Y. ; Sierakowski, R.L.</creatorcontrib><description>An accurate solution for high-frequency pulse propagation in an axisymmetric elastic bar is obtained using a new finite element technique that yields accurate non-oscillatory solutions for wave propagation problems in solids. The solution of the problem is very important for the understanding of dynamics experiments in the split Hopkinson pressure bar (SHPB). In contrast to known approaches, no additional assumptions are necessary for the accurate solution of the considered problem. The new solution helps to elucidate the complicated distribution of parameters during high-frequency pulse propagation down the bar as well as to estimate the applicability of the traditional dispersion correction used in the literature for the analysis of wave propagation in a finite bar. Due to the dimensionless formulation of the problem, the numerical results obtained depend on Poisson's ratio, the length of the bar and the pulse frequency, and are independent of Young's modulus, the density and the radius of the bar.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2010.01.021</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Axisymmetric ; Density ; Dispersions ; Exact sciences and technology ; Finite element method ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematical models ; Physics ; Pulse propagation ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Wave propagation</subject><ispartof>Journal of sound and vibration, 2010-07, Vol.329 (14), p.2851-2872</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-ae7d9895c0f5387e761ecddf1183d4abbb26e8eff34336c12caaf10d150e26c93</citedby><cites>FETCH-LOGICAL-c359t-ae7d9895c0f5387e761ecddf1183d4abbb26e8eff34336c12caaf10d150e26c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2010.01.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22607478$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Idesman, A.V.</creatorcontrib><creatorcontrib>Subramanian, K.</creatorcontrib><creatorcontrib>Schmidt, M.</creatorcontrib><creatorcontrib>Foley, J.R.</creatorcontrib><creatorcontrib>Tu, Y.</creatorcontrib><creatorcontrib>Sierakowski, R.L.</creatorcontrib><title>Finite element simulation of wave propagation in an axisymmetric bar</title><title>Journal of sound and vibration</title><description>An accurate solution for high-frequency pulse propagation in an axisymmetric elastic bar is obtained using a new finite element technique that yields accurate non-oscillatory solutions for wave propagation problems in solids. The solution of the problem is very important for the understanding of dynamics experiments in the split Hopkinson pressure bar (SHPB). In contrast to known approaches, no additional assumptions are necessary for the accurate solution of the considered problem. The new solution helps to elucidate the complicated distribution of parameters during high-frequency pulse propagation down the bar as well as to estimate the applicability of the traditional dispersion correction used in the literature for the analysis of wave propagation in a finite bar. Due to the dimensionless formulation of the problem, the numerical results obtained depend on Poisson's ratio, the length of the bar and the pulse frequency, and are independent of Young's modulus, the density and the radius of the bar.</description><subject>Axisymmetric</subject><subject>Density</subject><subject>Dispersions</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Pulse propagation</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Wave propagation</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNtexNOuM8l-4kmqVaHgRcFbyGYnkmU_arKt9t8bafEoDAwzPO98vIxdIiQImN-0Seu3CYdQAybA8YjNEKosLrO8PGYzAM7jNIf3U3bmfQsAVSrSGbtf2sFOFFFHPQ1T5G2_6dRkxyEaTfSlthSt3bhWH_ueHSIV4tv6Xd_T5KyOauXO2YlRnaeLQ56zt-XD6-IpXr08Pi_uVrEWWTXFioqmKqtMg8lEWVCRI-mmMYilaFJV1zXPqSRjRCpErpFrpQxCgxkQz3Ul5ux6Pzec9LkhP8neek1dpwYaN14WmShSTDMMJO5J7UbvHRm5drZXbicR5K9hspXBMPlrmASUwbCguTpMV16rzjg1aOv_hJznUKRFGbjbPUfh1a0lJ722NGhqrCM9yWa0_2z5ATARgTI</recordid><startdate>20100705</startdate><enddate>20100705</enddate><creator>Idesman, A.V.</creator><creator>Subramanian, K.</creator><creator>Schmidt, M.</creator><creator>Foley, J.R.</creator><creator>Tu, Y.</creator><creator>Sierakowski, R.L.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20100705</creationdate><title>Finite element simulation of wave propagation in an axisymmetric bar</title><author>Idesman, A.V. ; Subramanian, K. ; Schmidt, M. ; Foley, J.R. ; Tu, Y. ; Sierakowski, R.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-ae7d9895c0f5387e761ecddf1183d4abbb26e8eff34336c12caaf10d150e26c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Axisymmetric</topic><topic>Density</topic><topic>Dispersions</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Pulse propagation</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Idesman, A.V.</creatorcontrib><creatorcontrib>Subramanian, K.</creatorcontrib><creatorcontrib>Schmidt, M.</creatorcontrib><creatorcontrib>Foley, J.R.</creatorcontrib><creatorcontrib>Tu, Y.</creatorcontrib><creatorcontrib>Sierakowski, R.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Idesman, A.V.</au><au>Subramanian, K.</au><au>Schmidt, M.</au><au>Foley, J.R.</au><au>Tu, Y.</au><au>Sierakowski, R.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element simulation of wave propagation in an axisymmetric bar</atitle><jtitle>Journal of sound and vibration</jtitle><date>2010-07-05</date><risdate>2010</risdate><volume>329</volume><issue>14</issue><spage>2851</spage><epage>2872</epage><pages>2851-2872</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>An accurate solution for high-frequency pulse propagation in an axisymmetric elastic bar is obtained using a new finite element technique that yields accurate non-oscillatory solutions for wave propagation problems in solids. The solution of the problem is very important for the understanding of dynamics experiments in the split Hopkinson pressure bar (SHPB). In contrast to known approaches, no additional assumptions are necessary for the accurate solution of the considered problem. The new solution helps to elucidate the complicated distribution of parameters during high-frequency pulse propagation down the bar as well as to estimate the applicability of the traditional dispersion correction used in the literature for the analysis of wave propagation in a finite bar. Due to the dimensionless formulation of the problem, the numerical results obtained depend on Poisson's ratio, the length of the bar and the pulse frequency, and are independent of Young's modulus, the density and the radius of the bar.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2010.01.021</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2010-07, Vol.329 (14), p.2851-2872
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_miscellaneous_753741451
source ScienceDirect Journals (5 years ago - present)
subjects Axisymmetric
Density
Dispersions
Exact sciences and technology
Finite element method
Fundamental areas of phenomenology (including applications)
Mathematical analysis
Mathematical models
Physics
Pulse propagation
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Wave propagation
title Finite element simulation of wave propagation in an axisymmetric bar
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20simulation%20of%20wave%20propagation%20in%20an%20axisymmetric%20bar&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Idesman,%20A.V.&rft.date=2010-07-05&rft.volume=329&rft.issue=14&rft.spage=2851&rft.epage=2872&rft.pages=2851-2872&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1016/j.jsv.2010.01.021&rft_dat=%3Cproquest_cross%3E753741451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753741451&rft_id=info:pmid/&rft_els_id=S0022460X10000647&rfr_iscdi=true