Using empirical mode decomposition for iris recognition

Iris recognition is known as an inherently reliable technique for human identification. Empirical Mode Decomposition (EMD), an adaptive multi-resolution decomposition technique, appears to be suitable for non-linear, non-stationary data analysis. Based on EMD, a fully data-driven method without usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer standards and interfaces 2009-06, Vol.31 (4), p.729-739
Hauptverfasser: Chang, Chien-Ping, Lee, Jen-Chun, Su, Yu, Huang, Ping S., Tu, Te-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 739
container_issue 4
container_start_page 729
container_title Computer standards and interfaces
container_volume 31
creator Chang, Chien-Ping
Lee, Jen-Chun
Su, Yu
Huang, Ping S.
Tu, Te-Ming
description Iris recognition is known as an inherently reliable technique for human identification. Empirical Mode Decomposition (EMD), an adaptive multi-resolution decomposition technique, appears to be suitable for non-linear, non-stationary data analysis. Based on EMD, a fully data-driven method without using any pre-determined filter or wavelet function, an iris recognition scheme is presented by modifying EMD as a low-pass filter to analyze the iris images. To evaluate the efficacy of the proposed approach, three different similarity measures are used. Experimental results show that three metrics have all achieved promising and similar performance. Therefore, the proposed method demonstrates to be feasible for iris recognition and EMD is suitable for feature extraction.
doi_str_mv 10.1016/j.csi.2008.09.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753741247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092054890800113X</els_id><sourcerecordid>753741247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-321354183cc8e4bf7f3ca36dcda04f20060de733e82c45a346b00ae28fe89d093</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwA7jlxilh_UjsiBOqeEmVuNCz5dqbylUSBztF4t_jUs6cVpqdWe18hNxSqCjQ5n5f2eQrBqAqaCug_IwsqJKslEDVOVlAy6CshWovyVVKewBgDZcLIjfJj7sCh8lHb01fDMFh4dCGYQrJzz6MRRdikbepiFnejb_iNbnoTJ_w5m8uyeb56WP1Wq7fX95Wj-vSctbOJWeU14Iqbq1Cse1kx63hjbPOgOjyuw04lJyjYlbUhotmC2CQqQ5V66DlS3J3ujvF8HnANOvBJ4t9b0YMh6RlzaWgTMjspCenjSGliJ2eoh9M_NYU9JGR3uvMSB8ZaWh1ZpQzD6cM5gpfHqNO1uNo0fncddYu-H_SP6RYbtw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753741247</pqid></control><display><type>article</type><title>Using empirical mode decomposition for iris recognition</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chang, Chien-Ping ; Lee, Jen-Chun ; Su, Yu ; Huang, Ping S. ; Tu, Te-Ming</creator><creatorcontrib>Chang, Chien-Ping ; Lee, Jen-Chun ; Su, Yu ; Huang, Ping S. ; Tu, Te-Ming</creatorcontrib><description>Iris recognition is known as an inherently reliable technique for human identification. Empirical Mode Decomposition (EMD), an adaptive multi-resolution decomposition technique, appears to be suitable for non-linear, non-stationary data analysis. Based on EMD, a fully data-driven method without using any pre-determined filter or wavelet function, an iris recognition scheme is presented by modifying EMD as a low-pass filter to analyze the iris images. To evaluate the efficacy of the proposed approach, three different similarity measures are used. Experimental results show that three metrics have all achieved promising and similar performance. Therefore, the proposed method demonstrates to be feasible for iris recognition and EMD is suitable for feature extraction.</description><identifier>ISSN: 0920-5489</identifier><identifier>EISSN: 1872-7018</identifier><identifier>DOI: 10.1016/j.csi.2008.09.013</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Biometrics ; C (programming language) ; Decomposition ; Empirical analysis ; Empirical Mode Decomposition (EMD) ; Iris recognition ; Mathematical analysis ; Multi-resolution decomposition ; Recognition ; Similarity</subject><ispartof>Computer standards and interfaces, 2009-06, Vol.31 (4), p.729-739</ispartof><rights>2008 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-321354183cc8e4bf7f3ca36dcda04f20060de733e82c45a346b00ae28fe89d093</citedby><cites>FETCH-LOGICAL-c329t-321354183cc8e4bf7f3ca36dcda04f20060de733e82c45a346b00ae28fe89d093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.csi.2008.09.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Chang, Chien-Ping</creatorcontrib><creatorcontrib>Lee, Jen-Chun</creatorcontrib><creatorcontrib>Su, Yu</creatorcontrib><creatorcontrib>Huang, Ping S.</creatorcontrib><creatorcontrib>Tu, Te-Ming</creatorcontrib><title>Using empirical mode decomposition for iris recognition</title><title>Computer standards and interfaces</title><description>Iris recognition is known as an inherently reliable technique for human identification. Empirical Mode Decomposition (EMD), an adaptive multi-resolution decomposition technique, appears to be suitable for non-linear, non-stationary data analysis. Based on EMD, a fully data-driven method without using any pre-determined filter or wavelet function, an iris recognition scheme is presented by modifying EMD as a low-pass filter to analyze the iris images. To evaluate the efficacy of the proposed approach, three different similarity measures are used. Experimental results show that three metrics have all achieved promising and similar performance. Therefore, the proposed method demonstrates to be feasible for iris recognition and EMD is suitable for feature extraction.</description><subject>Biometrics</subject><subject>C (programming language)</subject><subject>Decomposition</subject><subject>Empirical analysis</subject><subject>Empirical Mode Decomposition (EMD)</subject><subject>Iris recognition</subject><subject>Mathematical analysis</subject><subject>Multi-resolution decomposition</subject><subject>Recognition</subject><subject>Similarity</subject><issn>0920-5489</issn><issn>1872-7018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwA7jlxilh_UjsiBOqeEmVuNCz5dqbylUSBztF4t_jUs6cVpqdWe18hNxSqCjQ5n5f2eQrBqAqaCug_IwsqJKslEDVOVlAy6CshWovyVVKewBgDZcLIjfJj7sCh8lHb01fDMFh4dCGYQrJzz6MRRdikbepiFnejb_iNbnoTJ_w5m8uyeb56WP1Wq7fX95Wj-vSctbOJWeU14Iqbq1Cse1kx63hjbPOgOjyuw04lJyjYlbUhotmC2CQqQ5V66DlS3J3ujvF8HnANOvBJ4t9b0YMh6RlzaWgTMjspCenjSGliJ2eoh9M_NYU9JGR3uvMSB8ZaWh1ZpQzD6cM5gpfHqNO1uNo0fncddYu-H_SP6RYbtw</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Chang, Chien-Ping</creator><creator>Lee, Jen-Chun</creator><creator>Su, Yu</creator><creator>Huang, Ping S.</creator><creator>Tu, Te-Ming</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090601</creationdate><title>Using empirical mode decomposition for iris recognition</title><author>Chang, Chien-Ping ; Lee, Jen-Chun ; Su, Yu ; Huang, Ping S. ; Tu, Te-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-321354183cc8e4bf7f3ca36dcda04f20060de733e82c45a346b00ae28fe89d093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biometrics</topic><topic>C (programming language)</topic><topic>Decomposition</topic><topic>Empirical analysis</topic><topic>Empirical Mode Decomposition (EMD)</topic><topic>Iris recognition</topic><topic>Mathematical analysis</topic><topic>Multi-resolution decomposition</topic><topic>Recognition</topic><topic>Similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Chien-Ping</creatorcontrib><creatorcontrib>Lee, Jen-Chun</creatorcontrib><creatorcontrib>Su, Yu</creatorcontrib><creatorcontrib>Huang, Ping S.</creatorcontrib><creatorcontrib>Tu, Te-Ming</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer standards and interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Chien-Ping</au><au>Lee, Jen-Chun</au><au>Su, Yu</au><au>Huang, Ping S.</au><au>Tu, Te-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using empirical mode decomposition for iris recognition</atitle><jtitle>Computer standards and interfaces</jtitle><date>2009-06-01</date><risdate>2009</risdate><volume>31</volume><issue>4</issue><spage>729</spage><epage>739</epage><pages>729-739</pages><issn>0920-5489</issn><eissn>1872-7018</eissn><abstract>Iris recognition is known as an inherently reliable technique for human identification. Empirical Mode Decomposition (EMD), an adaptive multi-resolution decomposition technique, appears to be suitable for non-linear, non-stationary data analysis. Based on EMD, a fully data-driven method without using any pre-determined filter or wavelet function, an iris recognition scheme is presented by modifying EMD as a low-pass filter to analyze the iris images. To evaluate the efficacy of the proposed approach, three different similarity measures are used. Experimental results show that three metrics have all achieved promising and similar performance. Therefore, the proposed method demonstrates to be feasible for iris recognition and EMD is suitable for feature extraction.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.csi.2008.09.013</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-5489
ispartof Computer standards and interfaces, 2009-06, Vol.31 (4), p.729-739
issn 0920-5489
1872-7018
language eng
recordid cdi_proquest_miscellaneous_753741247
source ScienceDirect Journals (5 years ago - present)
subjects Biometrics
C (programming language)
Decomposition
Empirical analysis
Empirical Mode Decomposition (EMD)
Iris recognition
Mathematical analysis
Multi-resolution decomposition
Recognition
Similarity
title Using empirical mode decomposition for iris recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A03%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20empirical%20mode%20decomposition%20for%20iris%20recognition&rft.jtitle=Computer%20standards%20and%20interfaces&rft.au=Chang,%20Chien-Ping&rft.date=2009-06-01&rft.volume=31&rft.issue=4&rft.spage=729&rft.epage=739&rft.pages=729-739&rft.issn=0920-5489&rft.eissn=1872-7018&rft_id=info:doi/10.1016/j.csi.2008.09.013&rft_dat=%3Cproquest_cross%3E753741247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753741247&rft_id=info:pmid/&rft_els_id=S092054890800113X&rfr_iscdi=true