Modelling of anodic dissolution of pure aluminium in sodium chloride
A mathematical model for simulating a passive aluminium (Al) surface with a pit in which active electrochemical metal dissolution occurs has been developed. The model includes hydrolysis products of Al and the species obtained as a result of homogeneous reactions between chloride and Al 3+ ions and...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2009-07, Vol.54 (19), p.4514-4524 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4524 |
---|---|
container_issue | 19 |
container_start_page | 4514 |
container_title | Electrochimica acta |
container_volume | 54 |
creator | Guseva, Olga Schmutz, Patrik Suter, Thomas von Trzebiatowski, Oliver |
description | A mathematical model for simulating a passive aluminium (Al) surface with a pit in which active electrochemical metal dissolution occurs has been developed. The model includes hydrolysis products of Al and the species obtained as a result of homogeneous reactions between chloride and Al
3+ ions and Al hydrolysis products. The model does not assume the equilibrium state in solution: all terms in homogeneous reactions are treated explicitly using kinetic constants taken from the literature. The validity of assuming reaction equilibrium has been addressed. Solution potential values and species concentrations are predicted for different dissolution current densities. The acidity in the pit is explained by the hydrolysis of Al
3+; an analytical expression for the pH values at the pit bottom for a given dissolution current density is presented.
The model is applied to a real capillary geometry used in electrochemical microcell experiments. It was found that for
r
cap/
r
pit
<
100, where
r
cap and
r
pit are the capillary end and pit radii, respectively, the insulating capillary wall affects the species concentrations and the solution potential. Moreover, for
r
cap/
r
pit
<
20, the shape of the capillary, which might not be cylindrical, should be taken into account. |
doi_str_mv | 10.1016/j.electacta.2009.03.048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753740792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468609004216</els_id><sourcerecordid>753740792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-efc7b82e9f6e1bf5db5c73ac683e747b93b9f6577a6c8a266f5a09be483b462a3</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmPwG-gFcWpxmiZpj9P4lIa4wDlKUxcyZc1IWiT-PZk27YpkyZb9-Osl5JpCQYGKu3WBDs2okxUlQFMAK6CqT8iM1pLlrObNKZkBUJZXohbn5CLGNQBIIWFG7l99h87Z4TPzfaYH31mTdTZG76bR-mGX3U4BM-2mjR3stMnskMWEpch8OR9sh5fkrNcu4tXBz8nH48P78jlfvT29LBer3DApxxx7I9u6xKYXSNuedy03kmkjaoaykm3D2lTiUmphal0K0XMNTYtVzdpKlJrNye1-7jb47wnjqDY2mnS-HtBPUUnOZAWyKRMp96QJPsaAvdoGu9HhV1FQO9nUWh1lUzvZFDCVZEudN4cdOhrt-qAHY-OxvaScC6BN4hZ7DtPDPxaDisbiYLCzIc1Vnbf_7voDs7mISw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753740792</pqid></control><display><type>article</type><title>Modelling of anodic dissolution of pure aluminium in sodium chloride</title><source>Elsevier ScienceDirect Journals</source><creator>Guseva, Olga ; Schmutz, Patrik ; Suter, Thomas ; von Trzebiatowski, Oliver</creator><creatorcontrib>Guseva, Olga ; Schmutz, Patrik ; Suter, Thomas ; von Trzebiatowski, Oliver</creatorcontrib><description>A mathematical model for simulating a passive aluminium (Al) surface with a pit in which active electrochemical metal dissolution occurs has been developed. The model includes hydrolysis products of Al and the species obtained as a result of homogeneous reactions between chloride and Al
3+ ions and Al hydrolysis products. The model does not assume the equilibrium state in solution: all terms in homogeneous reactions are treated explicitly using kinetic constants taken from the literature. The validity of assuming reaction equilibrium has been addressed. Solution potential values and species concentrations are predicted for different dissolution current densities. The acidity in the pit is explained by the hydrolysis of Al
3+; an analytical expression for the pH values at the pit bottom for a given dissolution current density is presented.
The model is applied to a real capillary geometry used in electrochemical microcell experiments. It was found that for
r
cap/
r
pit
<
100, where
r
cap and
r
pit are the capillary end and pit radii, respectively, the insulating capillary wall affects the species concentrations and the solution potential. Moreover, for
r
cap/
r
pit
<
20, the shape of the capillary, which might not be cylindrical, should be taken into account.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2009.03.048</identifier><identifier>CODEN: ELCAAV</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aluminium ; Aluminum ; Applied sciences ; Capillarity ; Chloride ; Corrosion ; Corrosion mechanisms ; Corrosion potential ; Current density ; Dissolution ; Exact sciences and technology ; Hydrolysis ; Mathematical models ; Metals. Metallurgy ; Microcell technique ; Modelling studies ; Pitting corrosion</subject><ispartof>Electrochimica acta, 2009-07, Vol.54 (19), p.4514-4524</ispartof><rights>2009 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-efc7b82e9f6e1bf5db5c73ac683e747b93b9f6577a6c8a266f5a09be483b462a3</citedby><cites>FETCH-LOGICAL-c377t-efc7b82e9f6e1bf5db5c73ac683e747b93b9f6577a6c8a266f5a09be483b462a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468609004216$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21556019$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Guseva, Olga</creatorcontrib><creatorcontrib>Schmutz, Patrik</creatorcontrib><creatorcontrib>Suter, Thomas</creatorcontrib><creatorcontrib>von Trzebiatowski, Oliver</creatorcontrib><title>Modelling of anodic dissolution of pure aluminium in sodium chloride</title><title>Electrochimica acta</title><description>A mathematical model for simulating a passive aluminium (Al) surface with a pit in which active electrochemical metal dissolution occurs has been developed. The model includes hydrolysis products of Al and the species obtained as a result of homogeneous reactions between chloride and Al
3+ ions and Al hydrolysis products. The model does not assume the equilibrium state in solution: all terms in homogeneous reactions are treated explicitly using kinetic constants taken from the literature. The validity of assuming reaction equilibrium has been addressed. Solution potential values and species concentrations are predicted for different dissolution current densities. The acidity in the pit is explained by the hydrolysis of Al
3+; an analytical expression for the pH values at the pit bottom for a given dissolution current density is presented.
The model is applied to a real capillary geometry used in electrochemical microcell experiments. It was found that for
r
cap/
r
pit
<
100, where
r
cap and
r
pit are the capillary end and pit radii, respectively, the insulating capillary wall affects the species concentrations and the solution potential. Moreover, for
r
cap/
r
pit
<
20, the shape of the capillary, which might not be cylindrical, should be taken into account.</description><subject>Aluminium</subject><subject>Aluminum</subject><subject>Applied sciences</subject><subject>Capillarity</subject><subject>Chloride</subject><subject>Corrosion</subject><subject>Corrosion mechanisms</subject><subject>Corrosion potential</subject><subject>Current density</subject><subject>Dissolution</subject><subject>Exact sciences and technology</subject><subject>Hydrolysis</subject><subject>Mathematical models</subject><subject>Metals. Metallurgy</subject><subject>Microcell technique</subject><subject>Modelling studies</subject><subject>Pitting corrosion</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEmPwG-gFcWpxmiZpj9P4lIa4wDlKUxcyZc1IWiT-PZk27YpkyZb9-Osl5JpCQYGKu3WBDs2okxUlQFMAK6CqT8iM1pLlrObNKZkBUJZXohbn5CLGNQBIIWFG7l99h87Z4TPzfaYH31mTdTZG76bR-mGX3U4BM-2mjR3stMnskMWEpch8OR9sh5fkrNcu4tXBz8nH48P78jlfvT29LBer3DApxxx7I9u6xKYXSNuedy03kmkjaoaykm3D2lTiUmphal0K0XMNTYtVzdpKlJrNye1-7jb47wnjqDY2mnS-HtBPUUnOZAWyKRMp96QJPsaAvdoGu9HhV1FQO9nUWh1lUzvZFDCVZEudN4cdOhrt-qAHY-OxvaScC6BN4hZ7DtPDPxaDisbiYLCzIc1Vnbf_7voDs7mISw</recordid><startdate>20090730</startdate><enddate>20090730</enddate><creator>Guseva, Olga</creator><creator>Schmutz, Patrik</creator><creator>Suter, Thomas</creator><creator>von Trzebiatowski, Oliver</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20090730</creationdate><title>Modelling of anodic dissolution of pure aluminium in sodium chloride</title><author>Guseva, Olga ; Schmutz, Patrik ; Suter, Thomas ; von Trzebiatowski, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-efc7b82e9f6e1bf5db5c73ac683e747b93b9f6577a6c8a266f5a09be483b462a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aluminium</topic><topic>Aluminum</topic><topic>Applied sciences</topic><topic>Capillarity</topic><topic>Chloride</topic><topic>Corrosion</topic><topic>Corrosion mechanisms</topic><topic>Corrosion potential</topic><topic>Current density</topic><topic>Dissolution</topic><topic>Exact sciences and technology</topic><topic>Hydrolysis</topic><topic>Mathematical models</topic><topic>Metals. Metallurgy</topic><topic>Microcell technique</topic><topic>Modelling studies</topic><topic>Pitting corrosion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guseva, Olga</creatorcontrib><creatorcontrib>Schmutz, Patrik</creatorcontrib><creatorcontrib>Suter, Thomas</creatorcontrib><creatorcontrib>von Trzebiatowski, Oliver</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guseva, Olga</au><au>Schmutz, Patrik</au><au>Suter, Thomas</au><au>von Trzebiatowski, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of anodic dissolution of pure aluminium in sodium chloride</atitle><jtitle>Electrochimica acta</jtitle><date>2009-07-30</date><risdate>2009</risdate><volume>54</volume><issue>19</issue><spage>4514</spage><epage>4524</epage><pages>4514-4524</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><coden>ELCAAV</coden><abstract>A mathematical model for simulating a passive aluminium (Al) surface with a pit in which active electrochemical metal dissolution occurs has been developed. The model includes hydrolysis products of Al and the species obtained as a result of homogeneous reactions between chloride and Al
3+ ions and Al hydrolysis products. The model does not assume the equilibrium state in solution: all terms in homogeneous reactions are treated explicitly using kinetic constants taken from the literature. The validity of assuming reaction equilibrium has been addressed. Solution potential values and species concentrations are predicted for different dissolution current densities. The acidity in the pit is explained by the hydrolysis of Al
3+; an analytical expression for the pH values at the pit bottom for a given dissolution current density is presented.
The model is applied to a real capillary geometry used in electrochemical microcell experiments. It was found that for
r
cap/
r
pit
<
100, where
r
cap and
r
pit are the capillary end and pit radii, respectively, the insulating capillary wall affects the species concentrations and the solution potential. Moreover, for
r
cap/
r
pit
<
20, the shape of the capillary, which might not be cylindrical, should be taken into account.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2009.03.048</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2009-07, Vol.54 (19), p.4514-4524 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_miscellaneous_753740792 |
source | Elsevier ScienceDirect Journals |
subjects | Aluminium Aluminum Applied sciences Capillarity Chloride Corrosion Corrosion mechanisms Corrosion potential Current density Dissolution Exact sciences and technology Hydrolysis Mathematical models Metals. Metallurgy Microcell technique Modelling studies Pitting corrosion |
title | Modelling of anodic dissolution of pure aluminium in sodium chloride |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A38%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20anodic%20dissolution%20of%20pure%20aluminium%20in%20sodium%20chloride&rft.jtitle=Electrochimica%20acta&rft.au=Guseva,%20Olga&rft.date=2009-07-30&rft.volume=54&rft.issue=19&rft.spage=4514&rft.epage=4524&rft.pages=4514-4524&rft.issn=0013-4686&rft.eissn=1873-3859&rft.coden=ELCAAV&rft_id=info:doi/10.1016/j.electacta.2009.03.048&rft_dat=%3Cproquest_cross%3E753740792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753740792&rft_id=info:pmid/&rft_els_id=S0013468609004216&rfr_iscdi=true |