Modelling of anodic dissolution of pure aluminium in sodium chloride

A mathematical model for simulating a passive aluminium (Al) surface with a pit in which active electrochemical metal dissolution occurs has been developed. The model includes hydrolysis products of Al and the species obtained as a result of homogeneous reactions between chloride and Al 3+ ions and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2009-07, Vol.54 (19), p.4514-4524
Hauptverfasser: Guseva, Olga, Schmutz, Patrik, Suter, Thomas, von Trzebiatowski, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4524
container_issue 19
container_start_page 4514
container_title Electrochimica acta
container_volume 54
creator Guseva, Olga
Schmutz, Patrik
Suter, Thomas
von Trzebiatowski, Oliver
description A mathematical model for simulating a passive aluminium (Al) surface with a pit in which active electrochemical metal dissolution occurs has been developed. The model includes hydrolysis products of Al and the species obtained as a result of homogeneous reactions between chloride and Al 3+ ions and Al hydrolysis products. The model does not assume the equilibrium state in solution: all terms in homogeneous reactions are treated explicitly using kinetic constants taken from the literature. The validity of assuming reaction equilibrium has been addressed. Solution potential values and species concentrations are predicted for different dissolution current densities. The acidity in the pit is explained by the hydrolysis of Al 3+; an analytical expression for the pH values at the pit bottom for a given dissolution current density is presented. The model is applied to a real capillary geometry used in electrochemical microcell experiments. It was found that for r cap/ r pit < 100, where r cap and r pit are the capillary end and pit radii, respectively, the insulating capillary wall affects the species concentrations and the solution potential. Moreover, for r cap/ r pit < 20, the shape of the capillary, which might not be cylindrical, should be taken into account.
doi_str_mv 10.1016/j.electacta.2009.03.048
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753740792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468609004216</els_id><sourcerecordid>753740792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-efc7b82e9f6e1bf5db5c73ac683e747b93b9f6577a6c8a266f5a09be483b462a3</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmPwG-gFcWpxmiZpj9P4lIa4wDlKUxcyZc1IWiT-PZk27YpkyZb9-Osl5JpCQYGKu3WBDs2okxUlQFMAK6CqT8iM1pLlrObNKZkBUJZXohbn5CLGNQBIIWFG7l99h87Z4TPzfaYH31mTdTZG76bR-mGX3U4BM-2mjR3stMnskMWEpch8OR9sh5fkrNcu4tXBz8nH48P78jlfvT29LBer3DApxxx7I9u6xKYXSNuedy03kmkjaoaykm3D2lTiUmphal0K0XMNTYtVzdpKlJrNye1-7jb47wnjqDY2mnS-HtBPUUnOZAWyKRMp96QJPsaAvdoGu9HhV1FQO9nUWh1lUzvZFDCVZEudN4cdOhrt-qAHY-OxvaScC6BN4hZ7DtPDPxaDisbiYLCzIc1Vnbf_7voDs7mISw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753740792</pqid></control><display><type>article</type><title>Modelling of anodic dissolution of pure aluminium in sodium chloride</title><source>Elsevier ScienceDirect Journals</source><creator>Guseva, Olga ; Schmutz, Patrik ; Suter, Thomas ; von Trzebiatowski, Oliver</creator><creatorcontrib>Guseva, Olga ; Schmutz, Patrik ; Suter, Thomas ; von Trzebiatowski, Oliver</creatorcontrib><description>A mathematical model for simulating a passive aluminium (Al) surface with a pit in which active electrochemical metal dissolution occurs has been developed. The model includes hydrolysis products of Al and the species obtained as a result of homogeneous reactions between chloride and Al 3+ ions and Al hydrolysis products. The model does not assume the equilibrium state in solution: all terms in homogeneous reactions are treated explicitly using kinetic constants taken from the literature. The validity of assuming reaction equilibrium has been addressed. Solution potential values and species concentrations are predicted for different dissolution current densities. The acidity in the pit is explained by the hydrolysis of Al 3+; an analytical expression for the pH values at the pit bottom for a given dissolution current density is presented. The model is applied to a real capillary geometry used in electrochemical microcell experiments. It was found that for r cap/ r pit &lt; 100, where r cap and r pit are the capillary end and pit radii, respectively, the insulating capillary wall affects the species concentrations and the solution potential. Moreover, for r cap/ r pit &lt; 20, the shape of the capillary, which might not be cylindrical, should be taken into account.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2009.03.048</identifier><identifier>CODEN: ELCAAV</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aluminium ; Aluminum ; Applied sciences ; Capillarity ; Chloride ; Corrosion ; Corrosion mechanisms ; Corrosion potential ; Current density ; Dissolution ; Exact sciences and technology ; Hydrolysis ; Mathematical models ; Metals. Metallurgy ; Microcell technique ; Modelling studies ; Pitting corrosion</subject><ispartof>Electrochimica acta, 2009-07, Vol.54 (19), p.4514-4524</ispartof><rights>2009 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-efc7b82e9f6e1bf5db5c73ac683e747b93b9f6577a6c8a266f5a09be483b462a3</citedby><cites>FETCH-LOGICAL-c377t-efc7b82e9f6e1bf5db5c73ac683e747b93b9f6577a6c8a266f5a09be483b462a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468609004216$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21556019$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Guseva, Olga</creatorcontrib><creatorcontrib>Schmutz, Patrik</creatorcontrib><creatorcontrib>Suter, Thomas</creatorcontrib><creatorcontrib>von Trzebiatowski, Oliver</creatorcontrib><title>Modelling of anodic dissolution of pure aluminium in sodium chloride</title><title>Electrochimica acta</title><description>A mathematical model for simulating a passive aluminium (Al) surface with a pit in which active electrochemical metal dissolution occurs has been developed. The model includes hydrolysis products of Al and the species obtained as a result of homogeneous reactions between chloride and Al 3+ ions and Al hydrolysis products. The model does not assume the equilibrium state in solution: all terms in homogeneous reactions are treated explicitly using kinetic constants taken from the literature. The validity of assuming reaction equilibrium has been addressed. Solution potential values and species concentrations are predicted for different dissolution current densities. The acidity in the pit is explained by the hydrolysis of Al 3+; an analytical expression for the pH values at the pit bottom for a given dissolution current density is presented. The model is applied to a real capillary geometry used in electrochemical microcell experiments. It was found that for r cap/ r pit &lt; 100, where r cap and r pit are the capillary end and pit radii, respectively, the insulating capillary wall affects the species concentrations and the solution potential. Moreover, for r cap/ r pit &lt; 20, the shape of the capillary, which might not be cylindrical, should be taken into account.</description><subject>Aluminium</subject><subject>Aluminum</subject><subject>Applied sciences</subject><subject>Capillarity</subject><subject>Chloride</subject><subject>Corrosion</subject><subject>Corrosion mechanisms</subject><subject>Corrosion potential</subject><subject>Current density</subject><subject>Dissolution</subject><subject>Exact sciences and technology</subject><subject>Hydrolysis</subject><subject>Mathematical models</subject><subject>Metals. Metallurgy</subject><subject>Microcell technique</subject><subject>Modelling studies</subject><subject>Pitting corrosion</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEmPwG-gFcWpxmiZpj9P4lIa4wDlKUxcyZc1IWiT-PZk27YpkyZb9-Osl5JpCQYGKu3WBDs2okxUlQFMAK6CqT8iM1pLlrObNKZkBUJZXohbn5CLGNQBIIWFG7l99h87Z4TPzfaYH31mTdTZG76bR-mGX3U4BM-2mjR3stMnskMWEpch8OR9sh5fkrNcu4tXBz8nH48P78jlfvT29LBer3DApxxx7I9u6xKYXSNuedy03kmkjaoaykm3D2lTiUmphal0K0XMNTYtVzdpKlJrNye1-7jb47wnjqDY2mnS-HtBPUUnOZAWyKRMp96QJPsaAvdoGu9HhV1FQO9nUWh1lUzvZFDCVZEudN4cdOhrt-qAHY-OxvaScC6BN4hZ7DtPDPxaDisbiYLCzIc1Vnbf_7voDs7mISw</recordid><startdate>20090730</startdate><enddate>20090730</enddate><creator>Guseva, Olga</creator><creator>Schmutz, Patrik</creator><creator>Suter, Thomas</creator><creator>von Trzebiatowski, Oliver</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20090730</creationdate><title>Modelling of anodic dissolution of pure aluminium in sodium chloride</title><author>Guseva, Olga ; Schmutz, Patrik ; Suter, Thomas ; von Trzebiatowski, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-efc7b82e9f6e1bf5db5c73ac683e747b93b9f6577a6c8a266f5a09be483b462a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aluminium</topic><topic>Aluminum</topic><topic>Applied sciences</topic><topic>Capillarity</topic><topic>Chloride</topic><topic>Corrosion</topic><topic>Corrosion mechanisms</topic><topic>Corrosion potential</topic><topic>Current density</topic><topic>Dissolution</topic><topic>Exact sciences and technology</topic><topic>Hydrolysis</topic><topic>Mathematical models</topic><topic>Metals. Metallurgy</topic><topic>Microcell technique</topic><topic>Modelling studies</topic><topic>Pitting corrosion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guseva, Olga</creatorcontrib><creatorcontrib>Schmutz, Patrik</creatorcontrib><creatorcontrib>Suter, Thomas</creatorcontrib><creatorcontrib>von Trzebiatowski, Oliver</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guseva, Olga</au><au>Schmutz, Patrik</au><au>Suter, Thomas</au><au>von Trzebiatowski, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of anodic dissolution of pure aluminium in sodium chloride</atitle><jtitle>Electrochimica acta</jtitle><date>2009-07-30</date><risdate>2009</risdate><volume>54</volume><issue>19</issue><spage>4514</spage><epage>4524</epage><pages>4514-4524</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><coden>ELCAAV</coden><abstract>A mathematical model for simulating a passive aluminium (Al) surface with a pit in which active electrochemical metal dissolution occurs has been developed. The model includes hydrolysis products of Al and the species obtained as a result of homogeneous reactions between chloride and Al 3+ ions and Al hydrolysis products. The model does not assume the equilibrium state in solution: all terms in homogeneous reactions are treated explicitly using kinetic constants taken from the literature. The validity of assuming reaction equilibrium has been addressed. Solution potential values and species concentrations are predicted for different dissolution current densities. The acidity in the pit is explained by the hydrolysis of Al 3+; an analytical expression for the pH values at the pit bottom for a given dissolution current density is presented. The model is applied to a real capillary geometry used in electrochemical microcell experiments. It was found that for r cap/ r pit &lt; 100, where r cap and r pit are the capillary end and pit radii, respectively, the insulating capillary wall affects the species concentrations and the solution potential. Moreover, for r cap/ r pit &lt; 20, the shape of the capillary, which might not be cylindrical, should be taken into account.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2009.03.048</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2009-07, Vol.54 (19), p.4514-4524
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_miscellaneous_753740792
source Elsevier ScienceDirect Journals
subjects Aluminium
Aluminum
Applied sciences
Capillarity
Chloride
Corrosion
Corrosion mechanisms
Corrosion potential
Current density
Dissolution
Exact sciences and technology
Hydrolysis
Mathematical models
Metals. Metallurgy
Microcell technique
Modelling studies
Pitting corrosion
title Modelling of anodic dissolution of pure aluminium in sodium chloride
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A38%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20anodic%20dissolution%20of%20pure%20aluminium%20in%20sodium%20chloride&rft.jtitle=Electrochimica%20acta&rft.au=Guseva,%20Olga&rft.date=2009-07-30&rft.volume=54&rft.issue=19&rft.spage=4514&rft.epage=4524&rft.pages=4514-4524&rft.issn=0013-4686&rft.eissn=1873-3859&rft.coden=ELCAAV&rft_id=info:doi/10.1016/j.electacta.2009.03.048&rft_dat=%3Cproquest_cross%3E753740792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753740792&rft_id=info:pmid/&rft_els_id=S0013468609004216&rfr_iscdi=true