Atomistic simulation of the surface structure of electrolytic manganese dioxide

Atomistic simulation methods were used to investigate the surface structures and stability of pyrolusite and ramsdellite polymorphs of electrolytic manganese dioxide (EMD). The interactions between the atoms were described using the Born model of Solids. This model was used to calculate the structur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface science 2009-11, Vol.603 (21), p.3184-3190
Hauptverfasser: Maphanga, R.R., Parker, S.C., Ngoepe, P.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3190
container_issue 21
container_start_page 3184
container_title Surface science
container_volume 603
creator Maphanga, R.R.
Parker, S.C.
Ngoepe, P.E.
description Atomistic simulation methods were used to investigate the surface structures and stability of pyrolusite and ramsdellite polymorphs of electrolytic manganese dioxide (EMD). The interactions between the atoms were described using the Born model of Solids. This model was used to calculate the structures and energies of the low index surfaces {0 0 1}, {0 1 0}, {0 1 1}, {1 0 0}, {1 0 1} and {1 1 0} for both pyrolusite and ramsdellite. Pyrolusite is isostructural with rutile and similar to rutile the {1 1 0} surface is found to be the most stable with the relaxed surface energy 2.07 J m −2. In contrast, for ramsdellite the {1 0 1} surface is the most stable with a surface energy of 1.52 J m −2. Pyrolusite {1 0 0} and ramsdellite {1 0 0} b surfaces have equivalent energies of 2.43 J m −2 and 2.45 J m −2, respectively and similar surface areas and hence are the likely source for the intergrowths. Finally, comparison of the energies of reduction suggests that the more stable surfaces of pyrolusite are more easily reduced.
doi_str_mv 10.1016/j.susc.2009.07.038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753740740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003960280900524X</els_id><sourcerecordid>35065706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-250c268ff8a9b46f0ecef259e2dc3b4e04f84633af721d698bb09ffce2474ab3</originalsourceid><addsrcrecordid>eNp9kE1PxCAQhonRxPXjD3jqRT21TimFkngxxq_ExIt3QumgbLpFgRr999Ks8biEZA7zvAPzEHJWQ1VDza_WVZyjqSiArEBU0HR7ZFV3QpZUtN0-WQE0suRAu0NyFOMa8mGyXZGXm-Q3LiZniug286iT81PhbZHesYhzsNrkmsJs0hxwaeCIJgU__iyZjZ7e9IQRi8H5bzfgCTmweox4-lePyev93evtY_n88vB0e_NcGtbKVNIWDOWdtZ2WPeMW0KClrUQ6mKZnCMx2jDeNtoLWA5dd34O01iBlgum-OSaX27EfwX_OGJPKSxgcx_wZP0cl2kYwyDeTFzvJpgXeCuAZpFvQBB9jQKs-gtvo8KNqUItktVaLZLVIViBUlpxD53_TdTR6tEFPxsX_JKU1rYGLzF1vOcxOvhwGFY3DyeDgQtapBu92PfMLsHGUQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35065706</pqid></control><display><type>article</type><title>Atomistic simulation of the surface structure of electrolytic manganese dioxide</title><source>Access via ScienceDirect (Elsevier)</source><creator>Maphanga, R.R. ; Parker, S.C. ; Ngoepe, P.E.</creator><creatorcontrib>Maphanga, R.R. ; Parker, S.C. ; Ngoepe, P.E.</creatorcontrib><description>Atomistic simulation methods were used to investigate the surface structures and stability of pyrolusite and ramsdellite polymorphs of electrolytic manganese dioxide (EMD). The interactions between the atoms were described using the Born model of Solids. This model was used to calculate the structures and energies of the low index surfaces {0 0 1}, {0 1 0}, {0 1 1}, {1 0 0}, {1 0 1} and {1 1 0} for both pyrolusite and ramsdellite. Pyrolusite is isostructural with rutile and similar to rutile the {1 1 0} surface is found to be the most stable with the relaxed surface energy 2.07 J m −2. In contrast, for ramsdellite the {1 0 1} surface is the most stable with a surface energy of 1.52 J m −2. Pyrolusite {1 0 0} and ramsdellite {1 0 0} b surfaces have equivalent energies of 2.43 J m −2 and 2.45 J m −2, respectively and similar surface areas and hence are the likely source for the intergrowths. Finally, comparison of the energies of reduction suggests that the more stable surfaces of pyrolusite are more easily reduced.</description><identifier>ISSN: 0039-6028</identifier><identifier>EISSN: 1879-2758</identifier><identifier>DOI: 10.1016/j.susc.2009.07.038</identifier><identifier>CODEN: SUSCAS</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Computer simulation ; Computer simulations ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Equivalence ; Exact sciences and technology ; Manganese dioxide ; Mathematical models ; Morphology ; Physics ; Pyrolusite ; Rutile ; Surface energy ; Surface structure</subject><ispartof>Surface science, 2009-11, Vol.603 (21), p.3184-3190</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-250c268ff8a9b46f0ecef259e2dc3b4e04f84633af721d698bb09ffce2474ab3</citedby><cites>FETCH-LOGICAL-c459t-250c268ff8a9b46f0ecef259e2dc3b4e04f84633af721d698bb09ffce2474ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.susc.2009.07.038$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22121067$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Maphanga, R.R.</creatorcontrib><creatorcontrib>Parker, S.C.</creatorcontrib><creatorcontrib>Ngoepe, P.E.</creatorcontrib><title>Atomistic simulation of the surface structure of electrolytic manganese dioxide</title><title>Surface science</title><description>Atomistic simulation methods were used to investigate the surface structures and stability of pyrolusite and ramsdellite polymorphs of electrolytic manganese dioxide (EMD). The interactions between the atoms were described using the Born model of Solids. This model was used to calculate the structures and energies of the low index surfaces {0 0 1}, {0 1 0}, {0 1 1}, {1 0 0}, {1 0 1} and {1 1 0} for both pyrolusite and ramsdellite. Pyrolusite is isostructural with rutile and similar to rutile the {1 1 0} surface is found to be the most stable with the relaxed surface energy 2.07 J m −2. In contrast, for ramsdellite the {1 0 1} surface is the most stable with a surface energy of 1.52 J m −2. Pyrolusite {1 0 0} and ramsdellite {1 0 0} b surfaces have equivalent energies of 2.43 J m −2 and 2.45 J m −2, respectively and similar surface areas and hence are the likely source for the intergrowths. Finally, comparison of the energies of reduction suggests that the more stable surfaces of pyrolusite are more easily reduced.</description><subject>Computer simulation</subject><subject>Computer simulations</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Equivalence</subject><subject>Exact sciences and technology</subject><subject>Manganese dioxide</subject><subject>Mathematical models</subject><subject>Morphology</subject><subject>Physics</subject><subject>Pyrolusite</subject><subject>Rutile</subject><subject>Surface energy</subject><subject>Surface structure</subject><issn>0039-6028</issn><issn>1879-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PxCAQhonRxPXjD3jqRT21TimFkngxxq_ExIt3QumgbLpFgRr999Ks8biEZA7zvAPzEHJWQ1VDza_WVZyjqSiArEBU0HR7ZFV3QpZUtN0-WQE0suRAu0NyFOMa8mGyXZGXm-Q3LiZniug286iT81PhbZHesYhzsNrkmsJs0hxwaeCIJgU__iyZjZ7e9IQRi8H5bzfgCTmweox4-lePyev93evtY_n88vB0e_NcGtbKVNIWDOWdtZ2WPeMW0KClrUQ6mKZnCMx2jDeNtoLWA5dd34O01iBlgum-OSaX27EfwX_OGJPKSxgcx_wZP0cl2kYwyDeTFzvJpgXeCuAZpFvQBB9jQKs-gtvo8KNqUItktVaLZLVIViBUlpxD53_TdTR6tEFPxsX_JKU1rYGLzF1vOcxOvhwGFY3DyeDgQtapBu92PfMLsHGUQQ</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Maphanga, R.R.</creator><creator>Parker, S.C.</creator><creator>Ngoepe, P.E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20091101</creationdate><title>Atomistic simulation of the surface structure of electrolytic manganese dioxide</title><author>Maphanga, R.R. ; Parker, S.C. ; Ngoepe, P.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-250c268ff8a9b46f0ecef259e2dc3b4e04f84633af721d698bb09ffce2474ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer simulation</topic><topic>Computer simulations</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Equivalence</topic><topic>Exact sciences and technology</topic><topic>Manganese dioxide</topic><topic>Mathematical models</topic><topic>Morphology</topic><topic>Physics</topic><topic>Pyrolusite</topic><topic>Rutile</topic><topic>Surface energy</topic><topic>Surface structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maphanga, R.R.</creatorcontrib><creatorcontrib>Parker, S.C.</creatorcontrib><creatorcontrib>Ngoepe, P.E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maphanga, R.R.</au><au>Parker, S.C.</au><au>Ngoepe, P.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomistic simulation of the surface structure of electrolytic manganese dioxide</atitle><jtitle>Surface science</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>603</volume><issue>21</issue><spage>3184</spage><epage>3190</epage><pages>3184-3190</pages><issn>0039-6028</issn><eissn>1879-2758</eissn><coden>SUSCAS</coden><abstract>Atomistic simulation methods were used to investigate the surface structures and stability of pyrolusite and ramsdellite polymorphs of electrolytic manganese dioxide (EMD). The interactions between the atoms were described using the Born model of Solids. This model was used to calculate the structures and energies of the low index surfaces {0 0 1}, {0 1 0}, {0 1 1}, {1 0 0}, {1 0 1} and {1 1 0} for both pyrolusite and ramsdellite. Pyrolusite is isostructural with rutile and similar to rutile the {1 1 0} surface is found to be the most stable with the relaxed surface energy 2.07 J m −2. In contrast, for ramsdellite the {1 0 1} surface is the most stable with a surface energy of 1.52 J m −2. Pyrolusite {1 0 0} and ramsdellite {1 0 0} b surfaces have equivalent energies of 2.43 J m −2 and 2.45 J m −2, respectively and similar surface areas and hence are the likely source for the intergrowths. Finally, comparison of the energies of reduction suggests that the more stable surfaces of pyrolusite are more easily reduced.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.susc.2009.07.038</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-6028
ispartof Surface science, 2009-11, Vol.603 (21), p.3184-3190
issn 0039-6028
1879-2758
language eng
recordid cdi_proquest_miscellaneous_753740740
source Access via ScienceDirect (Elsevier)
subjects Computer simulation
Computer simulations
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Equivalence
Exact sciences and technology
Manganese dioxide
Mathematical models
Morphology
Physics
Pyrolusite
Rutile
Surface energy
Surface structure
title Atomistic simulation of the surface structure of electrolytic manganese dioxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomistic%20simulation%20of%20the%20surface%20structure%20of%20electrolytic%20manganese%20dioxide&rft.jtitle=Surface%20science&rft.au=Maphanga,%20R.R.&rft.date=2009-11-01&rft.volume=603&rft.issue=21&rft.spage=3184&rft.epage=3190&rft.pages=3184-3190&rft.issn=0039-6028&rft.eissn=1879-2758&rft.coden=SUSCAS&rft_id=info:doi/10.1016/j.susc.2009.07.038&rft_dat=%3Cproquest_cross%3E35065706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35065706&rft_id=info:pmid/&rft_els_id=S003960280900524X&rfr_iscdi=true