Atomistic simulation of the surface structure of electrolytic manganese dioxide
Atomistic simulation methods were used to investigate the surface structures and stability of pyrolusite and ramsdellite polymorphs of electrolytic manganese dioxide (EMD). The interactions between the atoms were described using the Born model of Solids. This model was used to calculate the structur...
Gespeichert in:
Veröffentlicht in: | Surface science 2009-11, Vol.603 (21), p.3184-3190 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3190 |
---|---|
container_issue | 21 |
container_start_page | 3184 |
container_title | Surface science |
container_volume | 603 |
creator | Maphanga, R.R. Parker, S.C. Ngoepe, P.E. |
description | Atomistic simulation methods were used to investigate the surface structures and stability of pyrolusite and ramsdellite polymorphs of electrolytic manganese dioxide (EMD). The interactions between the atoms were described using the Born model of Solids. This model was used to calculate the structures and energies of the low index surfaces {0
0
1}, {0
1
0}, {0
1
1}, {1
0
0}, {1
0
1} and {1
1
0} for both pyrolusite and ramsdellite. Pyrolusite is isostructural with rutile and similar to rutile the {1
1
0} surface is found to be the most stable with the relaxed surface energy 2.07
J
m
−2. In contrast, for ramsdellite the {1
0
1} surface is the most stable with a surface energy of 1.52
J
m
−2. Pyrolusite {1
0
0} and ramsdellite {1
0
0}
b surfaces have equivalent energies of 2.43
J
m
−2 and 2.45
J
m
−2, respectively and similar surface areas and hence are the likely source for the intergrowths. Finally, comparison of the energies of reduction suggests that the more stable surfaces of pyrolusite are more easily reduced. |
doi_str_mv | 10.1016/j.susc.2009.07.038 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753740740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003960280900524X</els_id><sourcerecordid>35065706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-250c268ff8a9b46f0ecef259e2dc3b4e04f84633af721d698bb09ffce2474ab3</originalsourceid><addsrcrecordid>eNp9kE1PxCAQhonRxPXjD3jqRT21TimFkngxxq_ExIt3QumgbLpFgRr999Ks8biEZA7zvAPzEHJWQ1VDza_WVZyjqSiArEBU0HR7ZFV3QpZUtN0-WQE0suRAu0NyFOMa8mGyXZGXm-Q3LiZniug286iT81PhbZHesYhzsNrkmsJs0hxwaeCIJgU__iyZjZ7e9IQRi8H5bzfgCTmweox4-lePyev93evtY_n88vB0e_NcGtbKVNIWDOWdtZ2WPeMW0KClrUQ6mKZnCMx2jDeNtoLWA5dd34O01iBlgum-OSaX27EfwX_OGJPKSxgcx_wZP0cl2kYwyDeTFzvJpgXeCuAZpFvQBB9jQKs-gtvo8KNqUItktVaLZLVIViBUlpxD53_TdTR6tEFPxsX_JKU1rYGLzF1vOcxOvhwGFY3DyeDgQtapBu92PfMLsHGUQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35065706</pqid></control><display><type>article</type><title>Atomistic simulation of the surface structure of electrolytic manganese dioxide</title><source>Access via ScienceDirect (Elsevier)</source><creator>Maphanga, R.R. ; Parker, S.C. ; Ngoepe, P.E.</creator><creatorcontrib>Maphanga, R.R. ; Parker, S.C. ; Ngoepe, P.E.</creatorcontrib><description>Atomistic simulation methods were used to investigate the surface structures and stability of pyrolusite and ramsdellite polymorphs of electrolytic manganese dioxide (EMD). The interactions between the atoms were described using the Born model of Solids. This model was used to calculate the structures and energies of the low index surfaces {0
0
1}, {0
1
0}, {0
1
1}, {1
0
0}, {1
0
1} and {1
1
0} for both pyrolusite and ramsdellite. Pyrolusite is isostructural with rutile and similar to rutile the {1
1
0} surface is found to be the most stable with the relaxed surface energy 2.07
J
m
−2. In contrast, for ramsdellite the {1
0
1} surface is the most stable with a surface energy of 1.52
J
m
−2. Pyrolusite {1
0
0} and ramsdellite {1
0
0}
b surfaces have equivalent energies of 2.43
J
m
−2 and 2.45
J
m
−2, respectively and similar surface areas and hence are the likely source for the intergrowths. Finally, comparison of the energies of reduction suggests that the more stable surfaces of pyrolusite are more easily reduced.</description><identifier>ISSN: 0039-6028</identifier><identifier>EISSN: 1879-2758</identifier><identifier>DOI: 10.1016/j.susc.2009.07.038</identifier><identifier>CODEN: SUSCAS</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Computer simulation ; Computer simulations ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Equivalence ; Exact sciences and technology ; Manganese dioxide ; Mathematical models ; Morphology ; Physics ; Pyrolusite ; Rutile ; Surface energy ; Surface structure</subject><ispartof>Surface science, 2009-11, Vol.603 (21), p.3184-3190</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-250c268ff8a9b46f0ecef259e2dc3b4e04f84633af721d698bb09ffce2474ab3</citedby><cites>FETCH-LOGICAL-c459t-250c268ff8a9b46f0ecef259e2dc3b4e04f84633af721d698bb09ffce2474ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.susc.2009.07.038$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22121067$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Maphanga, R.R.</creatorcontrib><creatorcontrib>Parker, S.C.</creatorcontrib><creatorcontrib>Ngoepe, P.E.</creatorcontrib><title>Atomistic simulation of the surface structure of electrolytic manganese dioxide</title><title>Surface science</title><description>Atomistic simulation methods were used to investigate the surface structures and stability of pyrolusite and ramsdellite polymorphs of electrolytic manganese dioxide (EMD). The interactions between the atoms were described using the Born model of Solids. This model was used to calculate the structures and energies of the low index surfaces {0
0
1}, {0
1
0}, {0
1
1}, {1
0
0}, {1
0
1} and {1
1
0} for both pyrolusite and ramsdellite. Pyrolusite is isostructural with rutile and similar to rutile the {1
1
0} surface is found to be the most stable with the relaxed surface energy 2.07
J
m
−2. In contrast, for ramsdellite the {1
0
1} surface is the most stable with a surface energy of 1.52
J
m
−2. Pyrolusite {1
0
0} and ramsdellite {1
0
0}
b surfaces have equivalent energies of 2.43
J
m
−2 and 2.45
J
m
−2, respectively and similar surface areas and hence are the likely source for the intergrowths. Finally, comparison of the energies of reduction suggests that the more stable surfaces of pyrolusite are more easily reduced.</description><subject>Computer simulation</subject><subject>Computer simulations</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Equivalence</subject><subject>Exact sciences and technology</subject><subject>Manganese dioxide</subject><subject>Mathematical models</subject><subject>Morphology</subject><subject>Physics</subject><subject>Pyrolusite</subject><subject>Rutile</subject><subject>Surface energy</subject><subject>Surface structure</subject><issn>0039-6028</issn><issn>1879-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PxCAQhonRxPXjD3jqRT21TimFkngxxq_ExIt3QumgbLpFgRr999Ks8biEZA7zvAPzEHJWQ1VDza_WVZyjqSiArEBU0HR7ZFV3QpZUtN0-WQE0suRAu0NyFOMa8mGyXZGXm-Q3LiZniug286iT81PhbZHesYhzsNrkmsJs0hxwaeCIJgU__iyZjZ7e9IQRi8H5bzfgCTmweox4-lePyev93evtY_n88vB0e_NcGtbKVNIWDOWdtZ2WPeMW0KClrUQ6mKZnCMx2jDeNtoLWA5dd34O01iBlgum-OSaX27EfwX_OGJPKSxgcx_wZP0cl2kYwyDeTFzvJpgXeCuAZpFvQBB9jQKs-gtvo8KNqUItktVaLZLVIViBUlpxD53_TdTR6tEFPxsX_JKU1rYGLzF1vOcxOvhwGFY3DyeDgQtapBu92PfMLsHGUQQ</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Maphanga, R.R.</creator><creator>Parker, S.C.</creator><creator>Ngoepe, P.E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20091101</creationdate><title>Atomistic simulation of the surface structure of electrolytic manganese dioxide</title><author>Maphanga, R.R. ; Parker, S.C. ; Ngoepe, P.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-250c268ff8a9b46f0ecef259e2dc3b4e04f84633af721d698bb09ffce2474ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer simulation</topic><topic>Computer simulations</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Equivalence</topic><topic>Exact sciences and technology</topic><topic>Manganese dioxide</topic><topic>Mathematical models</topic><topic>Morphology</topic><topic>Physics</topic><topic>Pyrolusite</topic><topic>Rutile</topic><topic>Surface energy</topic><topic>Surface structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maphanga, R.R.</creatorcontrib><creatorcontrib>Parker, S.C.</creatorcontrib><creatorcontrib>Ngoepe, P.E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maphanga, R.R.</au><au>Parker, S.C.</au><au>Ngoepe, P.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomistic simulation of the surface structure of electrolytic manganese dioxide</atitle><jtitle>Surface science</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>603</volume><issue>21</issue><spage>3184</spage><epage>3190</epage><pages>3184-3190</pages><issn>0039-6028</issn><eissn>1879-2758</eissn><coden>SUSCAS</coden><abstract>Atomistic simulation methods were used to investigate the surface structures and stability of pyrolusite and ramsdellite polymorphs of electrolytic manganese dioxide (EMD). The interactions between the atoms were described using the Born model of Solids. This model was used to calculate the structures and energies of the low index surfaces {0
0
1}, {0
1
0}, {0
1
1}, {1
0
0}, {1
0
1} and {1
1
0} for both pyrolusite and ramsdellite. Pyrolusite is isostructural with rutile and similar to rutile the {1
1
0} surface is found to be the most stable with the relaxed surface energy 2.07
J
m
−2. In contrast, for ramsdellite the {1
0
1} surface is the most stable with a surface energy of 1.52
J
m
−2. Pyrolusite {1
0
0} and ramsdellite {1
0
0}
b surfaces have equivalent energies of 2.43
J
m
−2 and 2.45
J
m
−2, respectively and similar surface areas and hence are the likely source for the intergrowths. Finally, comparison of the energies of reduction suggests that the more stable surfaces of pyrolusite are more easily reduced.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.susc.2009.07.038</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-6028 |
ispartof | Surface science, 2009-11, Vol.603 (21), p.3184-3190 |
issn | 0039-6028 1879-2758 |
language | eng |
recordid | cdi_proquest_miscellaneous_753740740 |
source | Access via ScienceDirect (Elsevier) |
subjects | Computer simulation Computer simulations Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Equivalence Exact sciences and technology Manganese dioxide Mathematical models Morphology Physics Pyrolusite Rutile Surface energy Surface structure |
title | Atomistic simulation of the surface structure of electrolytic manganese dioxide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomistic%20simulation%20of%20the%20surface%20structure%20of%20electrolytic%20manganese%20dioxide&rft.jtitle=Surface%20science&rft.au=Maphanga,%20R.R.&rft.date=2009-11-01&rft.volume=603&rft.issue=21&rft.spage=3184&rft.epage=3190&rft.pages=3184-3190&rft.issn=0039-6028&rft.eissn=1879-2758&rft.coden=SUSCAS&rft_id=info:doi/10.1016/j.susc.2009.07.038&rft_dat=%3Cproquest_cross%3E35065706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35065706&rft_id=info:pmid/&rft_els_id=S003960280900524X&rfr_iscdi=true |