Coupled modeling of water transport and air–droplet interaction in the electrode of a proton exchange membrane fuel cell
In this work, an accurate and computationally fast model for liquid water transport within a proton exchange membrane fuel cell (PEMFC) electrode is developed by lumping the space-dependence of the relevant variables. Capillarity is considered as the main transport mechanism within the gas diffusion...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2010-07, Vol.195 (13), p.4149-4159 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4159 |
---|---|
container_issue | 13 |
container_start_page | 4149 |
container_title | Journal of power sources |
container_volume | 195 |
creator | Esposito, Angelo Pianese, Cesare Guezennec, Yann G. |
description | In this work, an accurate and computationally fast model for liquid water transport within a proton exchange membrane fuel cell (PEMFC) electrode is developed by lumping the space-dependence of the relevant variables. Capillarity is considered as the main transport mechanism within the gas diffusion layer (GDL). The novelty of the model lies in the coupled simulation of the water transport at the interface between gas diffusion layer and gas flow channel (GFC). This is achieved with a phenomenological description of the process that allows its simulation with relative simplicity. Moreover, a detailed two-dimensional visualization of such interface is achieved via geometric simulation of water droplets formation, growth, coalescence and detachment on the surface of the GDL. The model is useful for optimization analysis oriented to both PEMFC design and balance of plant. Furthermore, the accomplishment of reduced computational time and good accuracy makes the model suitable for control strategy implementation to ensure PEM fuel cells operation within optimal electrode water content. |
doi_str_mv | 10.1016/j.jpowsour.2010.01.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753740594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775310000753</els_id><sourcerecordid>753740594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-e82aec72afa30c7f8169cb450fe02de3ff2a5a1351eaef480a738975b190f05e3</originalsourceid><addsrcrecordid>eNqFkMGOFCEQhonRxHH1FQwX46lnC2iG7ptm4qrJJl70TGroYpdJd9MC7aon38E39ElkMutePUHgq7-qPsZeCtgKELvL4_a4xLsc17SVUB9BbEHCI7YRnVGNNFo_ZhtQpmuM0eope5bzEQCEMLBhP_dxXUYa-BQHGsN8w6Pnd1go8ZJwzktMheM8cAzpz6_fQ4qVLjzMlUBXQpzrnZdb4jSSK6mmnBKQLymW-knf3S3ON8Qnmg41kLhfaeSOxvE5e-JxzPTi_rxgX67efd5_aK4_vf-4f3vdOGXa0lAnkZyR6FGBM74Tu94dWg2eQA6kvJeoUSgtCMm3HaBRXW_0QfTgQZO6YK_PuXWkryvlYqeQTwPUaeKabZViWtB9W8ndmXQp5pzI2yWFCdMPK8CeXNuj_efanlxbELa6roWv7ltgdjj6uqgL-aFaSt0LudOVe3PmqO77LVCy2QWaHQ0hVXt2iOF_rf4Cr6-ciA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753740594</pqid></control><display><type>article</type><title>Coupled modeling of water transport and air–droplet interaction in the electrode of a proton exchange membrane fuel cell</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Esposito, Angelo ; Pianese, Cesare ; Guezennec, Yann G.</creator><creatorcontrib>Esposito, Angelo ; Pianese, Cesare ; Guezennec, Yann G.</creatorcontrib><description>In this work, an accurate and computationally fast model for liquid water transport within a proton exchange membrane fuel cell (PEMFC) electrode is developed by lumping the space-dependence of the relevant variables. Capillarity is considered as the main transport mechanism within the gas diffusion layer (GDL). The novelty of the model lies in the coupled simulation of the water transport at the interface between gas diffusion layer and gas flow channel (GFC). This is achieved with a phenomenological description of the process that allows its simulation with relative simplicity. Moreover, a detailed two-dimensional visualization of such interface is achieved via geometric simulation of water droplets formation, growth, coalescence and detachment on the surface of the GDL. The model is useful for optimization analysis oriented to both PEMFC design and balance of plant. Furthermore, the accomplishment of reduced computational time and good accuracy makes the model suitable for control strategy implementation to ensure PEM fuel cells operation within optimal electrode water content.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2010.01.020</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Coalescence and detachment ; Design and diagnosis ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Growth ; Liquid water transport ; PEMFC control ; Water droplets formation</subject><ispartof>Journal of power sources, 2010-07, Vol.195 (13), p.4149-4159</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-e82aec72afa30c7f8169cb450fe02de3ff2a5a1351eaef480a738975b190f05e3</citedby><cites>FETCH-LOGICAL-c374t-e82aec72afa30c7f8169cb450fe02de3ff2a5a1351eaef480a738975b190f05e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2010.01.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22591265$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Esposito, Angelo</creatorcontrib><creatorcontrib>Pianese, Cesare</creatorcontrib><creatorcontrib>Guezennec, Yann G.</creatorcontrib><title>Coupled modeling of water transport and air–droplet interaction in the electrode of a proton exchange membrane fuel cell</title><title>Journal of power sources</title><description>In this work, an accurate and computationally fast model for liquid water transport within a proton exchange membrane fuel cell (PEMFC) electrode is developed by lumping the space-dependence of the relevant variables. Capillarity is considered as the main transport mechanism within the gas diffusion layer (GDL). The novelty of the model lies in the coupled simulation of the water transport at the interface between gas diffusion layer and gas flow channel (GFC). This is achieved with a phenomenological description of the process that allows its simulation with relative simplicity. Moreover, a detailed two-dimensional visualization of such interface is achieved via geometric simulation of water droplets formation, growth, coalescence and detachment on the surface of the GDL. The model is useful for optimization analysis oriented to both PEMFC design and balance of plant. Furthermore, the accomplishment of reduced computational time and good accuracy makes the model suitable for control strategy implementation to ensure PEM fuel cells operation within optimal electrode water content.</description><subject>Applied sciences</subject><subject>Coalescence and detachment</subject><subject>Design and diagnosis</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Growth</subject><subject>Liquid water transport</subject><subject>PEMFC control</subject><subject>Water droplets formation</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkMGOFCEQhonRxHH1FQwX46lnC2iG7ptm4qrJJl70TGroYpdJd9MC7aon38E39ElkMutePUHgq7-qPsZeCtgKELvL4_a4xLsc17SVUB9BbEHCI7YRnVGNNFo_ZhtQpmuM0eope5bzEQCEMLBhP_dxXUYa-BQHGsN8w6Pnd1go8ZJwzktMheM8cAzpz6_fQ4qVLjzMlUBXQpzrnZdb4jSSK6mmnBKQLymW-knf3S3ON8Qnmg41kLhfaeSOxvE5e-JxzPTi_rxgX67efd5_aK4_vf-4f3vdOGXa0lAnkZyR6FGBM74Tu94dWg2eQA6kvJeoUSgtCMm3HaBRXW_0QfTgQZO6YK_PuXWkryvlYqeQTwPUaeKabZViWtB9W8ndmXQp5pzI2yWFCdMPK8CeXNuj_efanlxbELa6roWv7ltgdjj6uqgL-aFaSt0LudOVe3PmqO77LVCy2QWaHQ0hVXt2iOF_rf4Cr6-ciA</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Esposito, Angelo</creator><creator>Pianese, Cesare</creator><creator>Guezennec, Yann G.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20100701</creationdate><title>Coupled modeling of water transport and air–droplet interaction in the electrode of a proton exchange membrane fuel cell</title><author>Esposito, Angelo ; Pianese, Cesare ; Guezennec, Yann G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-e82aec72afa30c7f8169cb450fe02de3ff2a5a1351eaef480a738975b190f05e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Coalescence and detachment</topic><topic>Design and diagnosis</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Growth</topic><topic>Liquid water transport</topic><topic>PEMFC control</topic><topic>Water droplets formation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esposito, Angelo</creatorcontrib><creatorcontrib>Pianese, Cesare</creatorcontrib><creatorcontrib>Guezennec, Yann G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esposito, Angelo</au><au>Pianese, Cesare</au><au>Guezennec, Yann G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled modeling of water transport and air–droplet interaction in the electrode of a proton exchange membrane fuel cell</atitle><jtitle>Journal of power sources</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>195</volume><issue>13</issue><spage>4149</spage><epage>4159</epage><pages>4149-4159</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>In this work, an accurate and computationally fast model for liquid water transport within a proton exchange membrane fuel cell (PEMFC) electrode is developed by lumping the space-dependence of the relevant variables. Capillarity is considered as the main transport mechanism within the gas diffusion layer (GDL). The novelty of the model lies in the coupled simulation of the water transport at the interface between gas diffusion layer and gas flow channel (GFC). This is achieved with a phenomenological description of the process that allows its simulation with relative simplicity. Moreover, a detailed two-dimensional visualization of such interface is achieved via geometric simulation of water droplets formation, growth, coalescence and detachment on the surface of the GDL. The model is useful for optimization analysis oriented to both PEMFC design and balance of plant. Furthermore, the accomplishment of reduced computational time and good accuracy makes the model suitable for control strategy implementation to ensure PEM fuel cells operation within optimal electrode water content.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2010.01.020</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2010-07, Vol.195 (13), p.4149-4159 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_753740594 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Coalescence and detachment Design and diagnosis Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Growth Liquid water transport PEMFC control Water droplets formation |
title | Coupled modeling of water transport and air–droplet interaction in the electrode of a proton exchange membrane fuel cell |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A16%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20modeling%20of%20water%20transport%20and%20air%E2%80%93droplet%20interaction%20in%20the%20electrode%20of%20a%20proton%20exchange%20membrane%20fuel%20cell&rft.jtitle=Journal%20of%20power%20sources&rft.au=Esposito,%20Angelo&rft.date=2010-07-01&rft.volume=195&rft.issue=13&rft.spage=4149&rft.epage=4159&rft.pages=4149-4159&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2010.01.020&rft_dat=%3Cproquest_cross%3E753740594%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753740594&rft_id=info:pmid/&rft_els_id=S0378775310000753&rfr_iscdi=true |