An efficient method to compute the rate matrix for retrial queues with large number of servers

The approximate solution technique for the main M / M / c retrial queue based on the homogenization of the model employs a quasi-birth–death (QBD) process in which the maximum retrial rate is restricted above a certain level. This approximated continuous-time Markov chain (CTMC) can be solved by the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics letters 2010-05, Vol.23 (5), p.638-643
Hauptverfasser: Do, Tien Van, Chakka, Ram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 643
container_issue 5
container_start_page 638
container_title Applied mathematics letters
container_volume 23
creator Do, Tien Van
Chakka, Ram
description The approximate solution technique for the main M / M / c retrial queue based on the homogenization of the model employs a quasi-birth–death (QBD) process in which the maximum retrial rate is restricted above a certain level. This approximated continuous-time Markov chain (CTMC) can be solved by the matrix-geometric method, which involves the computation of the rate matrix R . This paper is motivated by two observations. Firstly, retrial queues for the performability analysis of telecommunication systems often involve the number of servers in the order of several hundreds of thousands. Secondly, there are no workable solutions till now for systems with such large number of servers, due to ill-conditioning or prohibitively large computation times. Our paper is the first to tackle the problem of large number of servers, very efficiently, in the homogenized M / M / c retrial queue which has paramount applications in networks. We present an efficient algorithm with the time complexity of only O ( c ) to compute the rate matrix R .
doi_str_mv 10.1016/j.aml.2010.02.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753740210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089396591000042X</els_id><sourcerecordid>753740210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-a8adc677112bd82fdb6b40fd94daa33903a7c0d11b6961dc29a853a47dbd82113</originalsourceid><addsrcrecordid>eNp9kEtv1DAQgC0EEsvCD-DmS8UpWz-SOBanqqJQqVIv7RVrYo9Zr5J4azsF_j1ebcWxp5mRvnl9hHzmbMcZ7y8PO5innWC1ZmLHmHxDNnxQsunaTrwlGzZo2ei-0-_Jh5wPrBJaDhvy82qh6H2wAZdCZyz76GiJ1Mb5uBakZY80QU1mKCn8oT4mmrCmMNGnFVfM9HcoezpB-oV0WecRE42eZkzPmPJH8s7DlPHTS9ySx5tvD9c_mrv777fXV3eNlZ0uDQzgbK8U52J0g_Bu7MeWeadbByClZhKUZY7zsdc9d1ZoGDoJrXInnHO5JV_Oc48p1rNyMXPIFqcJFoxrNqqTqmWCs0ryM2lTzDmhN8cUZkh_DWfmpNIcTFVpTioNE6aKqj0XL9MhW5h8gsWG_L9RiG5gXKnKfT1zWF99DphMPnm16EJCW4yL4ZUt_wDW8onG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753740210</pqid></control><display><type>article</type><title>An efficient method to compute the rate matrix for retrial queues with large number of servers</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Do, Tien Van ; Chakka, Ram</creator><creatorcontrib>Do, Tien Van ; Chakka, Ram</creatorcontrib><description>The approximate solution technique for the main M / M / c retrial queue based on the homogenization of the model employs a quasi-birth–death (QBD) process in which the maximum retrial rate is restricted above a certain level. This approximated continuous-time Markov chain (CTMC) can be solved by the matrix-geometric method, which involves the computation of the rate matrix R . This paper is motivated by two observations. Firstly, retrial queues for the performability analysis of telecommunication systems often involve the number of servers in the order of several hundreds of thousands. Secondly, there are no workable solutions till now for systems with such large number of servers, due to ill-conditioning or prohibitively large computation times. Our paper is the first to tackle the problem of large number of servers, very efficiently, in the homogenized M / M / c retrial queue which has paramount applications in networks. We present an efficient algorithm with the time complexity of only O ( c ) to compute the rate matrix R .</description><identifier>ISSN: 0893-9659</identifier><identifier>EISSN: 1873-5452</identifier><identifier>DOI: 10.1016/j.aml.2010.02.003</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algebra ; Algorithms ; Approximation ; Computation ; Exact sciences and technology ; Homogenization ; Homogenizing ; Linear and multilinear algebra, matrix theory ; Mathematical analysis ; Mathematical models ; Mathematics ; Matrix-geometric method ; Networks ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in probability and statistics ; Partial differential equations ; Queues ; Retrial queues ; Sciences and techniques of general use ; Sequences, series, summability ; Servers ; Spectral expansion ; Stochastic models ; Telecommunications</subject><ispartof>Applied mathematics letters, 2010-05, Vol.23 (5), p.638-643</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-a8adc677112bd82fdb6b40fd94daa33903a7c0d11b6961dc29a853a47dbd82113</citedby><cites>FETCH-LOGICAL-c359t-a8adc677112bd82fdb6b40fd94daa33903a7c0d11b6961dc29a853a47dbd82113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S089396591000042X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22580177$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Do, Tien Van</creatorcontrib><creatorcontrib>Chakka, Ram</creatorcontrib><title>An efficient method to compute the rate matrix for retrial queues with large number of servers</title><title>Applied mathematics letters</title><description>The approximate solution technique for the main M / M / c retrial queue based on the homogenization of the model employs a quasi-birth–death (QBD) process in which the maximum retrial rate is restricted above a certain level. This approximated continuous-time Markov chain (CTMC) can be solved by the matrix-geometric method, which involves the computation of the rate matrix R . This paper is motivated by two observations. Firstly, retrial queues for the performability analysis of telecommunication systems often involve the number of servers in the order of several hundreds of thousands. Secondly, there are no workable solutions till now for systems with such large number of servers, due to ill-conditioning or prohibitively large computation times. Our paper is the first to tackle the problem of large number of servers, very efficiently, in the homogenized M / M / c retrial queue which has paramount applications in networks. We present an efficient algorithm with the time complexity of only O ( c ) to compute the rate matrix R .</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Computation</subject><subject>Exact sciences and technology</subject><subject>Homogenization</subject><subject>Homogenizing</subject><subject>Linear and multilinear algebra, matrix theory</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Matrix-geometric method</subject><subject>Networks</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in probability and statistics</subject><subject>Partial differential equations</subject><subject>Queues</subject><subject>Retrial queues</subject><subject>Sciences and techniques of general use</subject><subject>Sequences, series, summability</subject><subject>Servers</subject><subject>Spectral expansion</subject><subject>Stochastic models</subject><subject>Telecommunications</subject><issn>0893-9659</issn><issn>1873-5452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEtv1DAQgC0EEsvCD-DmS8UpWz-SOBanqqJQqVIv7RVrYo9Zr5J4azsF_j1ebcWxp5mRvnl9hHzmbMcZ7y8PO5innWC1ZmLHmHxDNnxQsunaTrwlGzZo2ei-0-_Jh5wPrBJaDhvy82qh6H2wAZdCZyz76GiJ1Mb5uBakZY80QU1mKCn8oT4mmrCmMNGnFVfM9HcoezpB-oV0WecRE42eZkzPmPJH8s7DlPHTS9ySx5tvD9c_mrv777fXV3eNlZ0uDQzgbK8U52J0g_Bu7MeWeadbByClZhKUZY7zsdc9d1ZoGDoJrXInnHO5JV_Oc48p1rNyMXPIFqcJFoxrNqqTqmWCs0ryM2lTzDmhN8cUZkh_DWfmpNIcTFVpTioNE6aKqj0XL9MhW5h8gsWG_L9RiG5gXKnKfT1zWF99DphMPnm16EJCW4yL4ZUt_wDW8onG</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Do, Tien Van</creator><creator>Chakka, Ram</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100501</creationdate><title>An efficient method to compute the rate matrix for retrial queues with large number of servers</title><author>Do, Tien Van ; Chakka, Ram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-a8adc677112bd82fdb6b40fd94daa33903a7c0d11b6961dc29a853a47dbd82113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Computation</topic><topic>Exact sciences and technology</topic><topic>Homogenization</topic><topic>Homogenizing</topic><topic>Linear and multilinear algebra, matrix theory</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Matrix-geometric method</topic><topic>Networks</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in probability and statistics</topic><topic>Partial differential equations</topic><topic>Queues</topic><topic>Retrial queues</topic><topic>Sciences and techniques of general use</topic><topic>Sequences, series, summability</topic><topic>Servers</topic><topic>Spectral expansion</topic><topic>Stochastic models</topic><topic>Telecommunications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Do, Tien Van</creatorcontrib><creatorcontrib>Chakka, Ram</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Do, Tien Van</au><au>Chakka, Ram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient method to compute the rate matrix for retrial queues with large number of servers</atitle><jtitle>Applied mathematics letters</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>23</volume><issue>5</issue><spage>638</spage><epage>643</epage><pages>638-643</pages><issn>0893-9659</issn><eissn>1873-5452</eissn><abstract>The approximate solution technique for the main M / M / c retrial queue based on the homogenization of the model employs a quasi-birth–death (QBD) process in which the maximum retrial rate is restricted above a certain level. This approximated continuous-time Markov chain (CTMC) can be solved by the matrix-geometric method, which involves the computation of the rate matrix R . This paper is motivated by two observations. Firstly, retrial queues for the performability analysis of telecommunication systems often involve the number of servers in the order of several hundreds of thousands. Secondly, there are no workable solutions till now for systems with such large number of servers, due to ill-conditioning or prohibitively large computation times. Our paper is the first to tackle the problem of large number of servers, very efficiently, in the homogenized M / M / c retrial queue which has paramount applications in networks. We present an efficient algorithm with the time complexity of only O ( c ) to compute the rate matrix R .</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.aml.2010.02.003</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-9659
ispartof Applied mathematics letters, 2010-05, Vol.23 (5), p.638-643
issn 0893-9659
1873-5452
language eng
recordid cdi_proquest_miscellaneous_753740210
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algebra
Algorithms
Approximation
Computation
Exact sciences and technology
Homogenization
Homogenizing
Linear and multilinear algebra, matrix theory
Mathematical analysis
Mathematical models
Mathematics
Matrix-geometric method
Networks
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in probability and statistics
Partial differential equations
Queues
Retrial queues
Sciences and techniques of general use
Sequences, series, summability
Servers
Spectral expansion
Stochastic models
Telecommunications
title An efficient method to compute the rate matrix for retrial queues with large number of servers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A55%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20method%20to%20compute%20the%20rate%20matrix%20for%20retrial%20queues%20with%20large%20number%20of%20servers&rft.jtitle=Applied%20mathematics%20letters&rft.au=Do,%20Tien%20Van&rft.date=2010-05-01&rft.volume=23&rft.issue=5&rft.spage=638&rft.epage=643&rft.pages=638-643&rft.issn=0893-9659&rft.eissn=1873-5452&rft_id=info:doi/10.1016/j.aml.2010.02.003&rft_dat=%3Cproquest_cross%3E753740210%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753740210&rft_id=info:pmid/&rft_els_id=S089396591000042X&rfr_iscdi=true