Approximation properties of a new type Bernstein–Stancu polynomials of one and two variables

A new generalization of Bernstein–Stancu type polynomials for one and two variables are constructed and the theorems on convergence and the degree of convergence are established. In addition some numerical examples, corresponding to obtaining results are given.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2010-04, Vol.216 (3), p.890-901
Hauptverfasser: Gadjiev, A.D., Ghorbanalizadeh, A.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 901
container_issue 3
container_start_page 890
container_title Applied mathematics and computation
container_volume 216
creator Gadjiev, A.D.
Ghorbanalizadeh, A.M.
description A new generalization of Bernstein–Stancu type polynomials for one and two variables are constructed and the theorems on convergence and the degree of convergence are established. In addition some numerical examples, corresponding to obtaining results are given.
doi_str_mv 10.1016/j.amc.2010.01.099
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753740074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300310001232</els_id><sourcerecordid>753740074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7a9b7892950dfb9a27c9e430e20bace5ebdc88b854e3d783d2d5865c2def862f3</originalsourceid><addsrcrecordid>eNp9kL9uFDEQhy0EEkfgAejcIKo9xvZ6vRZViPgnRaIIabG89qzk05692L6E6_IOvCFPEoeLKKnGI38zo-9HyGsGWwZseLfb2r3bcmg9sC1o_YRs2KhEJ4dePyUbAD10AkA8Jy9K2QGAGli_IT_O1zWnX2Fva0iRtveKuQYsNM3U0oi3tB5XpB8wx1IxxD93v6-qje5A17QcY9oHu_yFU0Rqo6f1NtEbm4OdFiwvybO5_eOrx3pGrj99_H7xpbv89vnrxfll54TUtVNWT2rUXEvw86QtV05jLwA5TNahxMm7cZxG2aPwahSeezkO0nGP8zjwWZyRt6e9TeDnAUs1-1AcLouNmA7FKClU35z7RrIT6XIqJeNs1tzs89EwMA9Rmp1pUZqHKA0w06JsM28et9vi7DLn5h_Kv0HOpQalRePenzhsqjcBsykuYHToQ0ZXjU_hP1fuASXfi6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753740074</pqid></control><display><type>article</type><title>Approximation properties of a new type Bernstein–Stancu polynomials of one and two variables</title><source>Access via ScienceDirect (Elsevier)</source><creator>Gadjiev, A.D. ; Ghorbanalizadeh, A.M.</creator><creatorcontrib>Gadjiev, A.D. ; Ghorbanalizadeh, A.M.</creatorcontrib><description>A new generalization of Bernstein–Stancu type polynomials for one and two variables are constructed and the theorems on convergence and the degree of convergence are established. In addition some numerical examples, corresponding to obtaining results are given.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2010.01.099</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Acceleration of convergence ; Approximation ; Bernstein–Stancu type polynomials ; Computation ; Construction ; Convergence ; Exact sciences and technology ; Korovkin’s theorem ; Mathematical analysis ; Mathematical models ; Mathematics ; Modulus of continuity ; Numerical analysis ; Numerical analysis. Scientific computation ; Operator theory ; Positive linear operators ; Rate of convergence ; Sciences and techniques of general use ; Theorems ; Uniform approximation</subject><ispartof>Applied mathematics and computation, 2010-04, Vol.216 (3), p.890-901</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-7a9b7892950dfb9a27c9e430e20bace5ebdc88b854e3d783d2d5865c2def862f3</citedby><cites>FETCH-LOGICAL-c359t-7a9b7892950dfb9a27c9e430e20bace5ebdc88b854e3d783d2d5865c2def862f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2010.01.099$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22590793$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gadjiev, A.D.</creatorcontrib><creatorcontrib>Ghorbanalizadeh, A.M.</creatorcontrib><title>Approximation properties of a new type Bernstein–Stancu polynomials of one and two variables</title><title>Applied mathematics and computation</title><description>A new generalization of Bernstein–Stancu type polynomials for one and two variables are constructed and the theorems on convergence and the degree of convergence are established. In addition some numerical examples, corresponding to obtaining results are given.</description><subject>Acceleration of convergence</subject><subject>Approximation</subject><subject>Bernstein–Stancu type polynomials</subject><subject>Computation</subject><subject>Construction</subject><subject>Convergence</subject><subject>Exact sciences and technology</subject><subject>Korovkin’s theorem</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Modulus of continuity</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Operator theory</subject><subject>Positive linear operators</subject><subject>Rate of convergence</subject><subject>Sciences and techniques of general use</subject><subject>Theorems</subject><subject>Uniform approximation</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kL9uFDEQhy0EEkfgAejcIKo9xvZ6vRZViPgnRaIIabG89qzk05692L6E6_IOvCFPEoeLKKnGI38zo-9HyGsGWwZseLfb2r3bcmg9sC1o_YRs2KhEJ4dePyUbAD10AkA8Jy9K2QGAGli_IT_O1zWnX2Fva0iRtveKuQYsNM3U0oi3tB5XpB8wx1IxxD93v6-qje5A17QcY9oHu_yFU0Rqo6f1NtEbm4OdFiwvybO5_eOrx3pGrj99_H7xpbv89vnrxfll54TUtVNWT2rUXEvw86QtV05jLwA5TNahxMm7cZxG2aPwahSeezkO0nGP8zjwWZyRt6e9TeDnAUs1-1AcLouNmA7FKClU35z7RrIT6XIqJeNs1tzs89EwMA9Rmp1pUZqHKA0w06JsM28et9vi7DLn5h_Kv0HOpQalRePenzhsqjcBsykuYHToQ0ZXjU_hP1fuASXfi6o</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Gadjiev, A.D.</creator><creator>Ghorbanalizadeh, A.M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100401</creationdate><title>Approximation properties of a new type Bernstein–Stancu polynomials of one and two variables</title><author>Gadjiev, A.D. ; Ghorbanalizadeh, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7a9b7892950dfb9a27c9e430e20bace5ebdc88b854e3d783d2d5865c2def862f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acceleration of convergence</topic><topic>Approximation</topic><topic>Bernstein–Stancu type polynomials</topic><topic>Computation</topic><topic>Construction</topic><topic>Convergence</topic><topic>Exact sciences and technology</topic><topic>Korovkin’s theorem</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Modulus of continuity</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Operator theory</topic><topic>Positive linear operators</topic><topic>Rate of convergence</topic><topic>Sciences and techniques of general use</topic><topic>Theorems</topic><topic>Uniform approximation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gadjiev, A.D.</creatorcontrib><creatorcontrib>Ghorbanalizadeh, A.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gadjiev, A.D.</au><au>Ghorbanalizadeh, A.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximation properties of a new type Bernstein–Stancu polynomials of one and two variables</atitle><jtitle>Applied mathematics and computation</jtitle><date>2010-04-01</date><risdate>2010</risdate><volume>216</volume><issue>3</issue><spage>890</spage><epage>901</epage><pages>890-901</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>A new generalization of Bernstein–Stancu type polynomials for one and two variables are constructed and the theorems on convergence and the degree of convergence are established. In addition some numerical examples, corresponding to obtaining results are given.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2010.01.099</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2010-04, Vol.216 (3), p.890-901
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_753740074
source Access via ScienceDirect (Elsevier)
subjects Acceleration of convergence
Approximation
Bernstein–Stancu type polynomials
Computation
Construction
Convergence
Exact sciences and technology
Korovkin’s theorem
Mathematical analysis
Mathematical models
Mathematics
Modulus of continuity
Numerical analysis
Numerical analysis. Scientific computation
Operator theory
Positive linear operators
Rate of convergence
Sciences and techniques of general use
Theorems
Uniform approximation
title Approximation properties of a new type Bernstein–Stancu polynomials of one and two variables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximation%20properties%20of%20a%20new%20type%20Bernstein%E2%80%93Stancu%20polynomials%20of%20one%20and%20two%20variables&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Gadjiev,%20A.D.&rft.date=2010-04-01&rft.volume=216&rft.issue=3&rft.spage=890&rft.epage=901&rft.pages=890-901&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2010.01.099&rft_dat=%3Cproquest_cross%3E753740074%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753740074&rft_id=info:pmid/&rft_els_id=S0096300310001232&rfr_iscdi=true