Flux linkage areas of coupling current loops for different shape cable-in-conduit conductor

For large scale application such as fusion magnets, the cable-in-conduit conductor (CICC) is the most promising conductor because of its high mechanical strength under large electromagnetic force. However, there are still remained issues about degradation of critical current of Nb 3Sn conductor and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cryogenics (Guildford) 2010-03, Vol.50 (3), p.200-203
Hauptverfasser: Yagai, Tsuyoshi, Shibata, Yasuyuki, Ohmura, Jun, Tsuda, Makoto, Hamajima, Takataro, Nunoya, Yoshihiko, Okuno, Kiyoshi, Takahata, Kazuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 203
container_issue 3
container_start_page 200
container_title Cryogenics (Guildford)
container_volume 50
creator Yagai, Tsuyoshi
Shibata, Yasuyuki
Ohmura, Jun
Tsuda, Makoto
Hamajima, Takataro
Nunoya, Yoshihiko
Okuno, Kiyoshi
Takahata, Kazuya
description For large scale application such as fusion magnets, the cable-in-conduit conductor (CICC) is the most promising conductor because of its high mechanical strength under large electromagnetic force. However, there are still remained issues about degradation of critical current of Nb 3Sn conductor and unpredictable AC loss. With regard to the second item, inter-strand coupling current loss is dominant among the AC losses and unpredictable before fabricating large scale conductor. The strand displacements which are caused by the compaction of the conductor in order to increase its current density would cause the loss. In order to do quantitative investigation of the relation between the loss and the strand displacements, we measured strand traces for circular conductor and rectangular conductor. The evaluation of the flux linkage areas which are driving forces of the coupling current indicated that the flux linkage areas have strong dependence on the changing magnetic field only for the rectangular one. It also indicated that the loss should be large when the field is applied from the direction which is perpendicular to the wide surface of the conduit.
doi_str_mv 10.1016/j.cryogenics.2009.07.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753739314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001122750900126X</els_id><sourcerecordid>753739314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-311aea4eb6bae70e1fb5c3a7699324825913e7a7617982e265fc71f24c2a47743</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMI_-II4JfiVuDlCRQGpEhc4cbDc7bq4pHGwE0T_nrRFcOQ0u6OZHe0QQjnLOePl9TqHuA0rbDykXDBW5UznAxyREZ_oKhNCFsdkxBjnw6yLU3KW0poxpkQpRuR1VvdftPbNu10htRFtosFRCH07kCsKfYzYdLQOoU3UhUiX3jncc-nNtkjBLmrMfJNBaJa97-geoQvxnJw4Wye8-MExeZndPU8fsvnT_eP0Zp6BUmWXSc4tWoWLcmFRM-RuUYC0uqwqKdREFBWXqIed62oiUJSFA82dUCCs0lrJMbk63G1j-OgxdWbjE2Bd2wZDn4wupJaV5Dvl5KCEGFKK6Ewb_cbGreHM7Oo0a_NXp9nVaZg2AwzWy58Qm8DWLtoGfPr1C1HoUhVs0N0edDh8_OkxmgQeG8CljwidWQb_f9g3K3aRPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753739314</pqid></control><display><type>article</type><title>Flux linkage areas of coupling current loops for different shape cable-in-conduit conductor</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yagai, Tsuyoshi ; Shibata, Yasuyuki ; Ohmura, Jun ; Tsuda, Makoto ; Hamajima, Takataro ; Nunoya, Yoshihiko ; Okuno, Kiyoshi ; Takahata, Kazuya</creator><creatorcontrib>Yagai, Tsuyoshi ; Shibata, Yasuyuki ; Ohmura, Jun ; Tsuda, Makoto ; Hamajima, Takataro ; Nunoya, Yoshihiko ; Okuno, Kiyoshi ; Takahata, Kazuya</creatorcontrib><description>For large scale application such as fusion magnets, the cable-in-conduit conductor (CICC) is the most promising conductor because of its high mechanical strength under large electromagnetic force. However, there are still remained issues about degradation of critical current of Nb 3Sn conductor and unpredictable AC loss. With regard to the second item, inter-strand coupling current loss is dominant among the AC losses and unpredictable before fabricating large scale conductor. The strand displacements which are caused by the compaction of the conductor in order to increase its current density would cause the loss. In order to do quantitative investigation of the relation between the loss and the strand displacements, we measured strand traces for circular conductor and rectangular conductor. The evaluation of the flux linkage areas which are driving forces of the coupling current indicated that the flux linkage areas have strong dependence on the changing magnetic field only for the rectangular one. It also indicated that the loss should be large when the field is applied from the direction which is perpendicular to the wide surface of the conduit.</description><identifier>ISSN: 0011-2275</identifier><identifier>EISSN: 1879-2235</identifier><identifier>DOI: 10.1016/j.cryogenics.2009.07.009</identifier><identifier>CODEN: CRYOAX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternating current ; Applied sciences ; Cable-in-conduit conductor ; Conductors (devices) ; Conduits ; Cryogenics ; Current loss ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Flux ; Flux linkage area ; Inter-strand coupling loss ; Joining ; Linkages ; Refrigerating engineering. Cryogenics. Food conservation ; Shape dependence ; Strands</subject><ispartof>Cryogenics (Guildford), 2010-03, Vol.50 (3), p.200-203</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-311aea4eb6bae70e1fb5c3a7699324825913e7a7617982e265fc71f24c2a47743</citedby><cites>FETCH-LOGICAL-c446t-311aea4eb6bae70e1fb5c3a7699324825913e7a7617982e265fc71f24c2a47743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cryogenics.2009.07.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22576450$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yagai, Tsuyoshi</creatorcontrib><creatorcontrib>Shibata, Yasuyuki</creatorcontrib><creatorcontrib>Ohmura, Jun</creatorcontrib><creatorcontrib>Tsuda, Makoto</creatorcontrib><creatorcontrib>Hamajima, Takataro</creatorcontrib><creatorcontrib>Nunoya, Yoshihiko</creatorcontrib><creatorcontrib>Okuno, Kiyoshi</creatorcontrib><creatorcontrib>Takahata, Kazuya</creatorcontrib><title>Flux linkage areas of coupling current loops for different shape cable-in-conduit conductor</title><title>Cryogenics (Guildford)</title><description>For large scale application such as fusion magnets, the cable-in-conduit conductor (CICC) is the most promising conductor because of its high mechanical strength under large electromagnetic force. However, there are still remained issues about degradation of critical current of Nb 3Sn conductor and unpredictable AC loss. With regard to the second item, inter-strand coupling current loss is dominant among the AC losses and unpredictable before fabricating large scale conductor. The strand displacements which are caused by the compaction of the conductor in order to increase its current density would cause the loss. In order to do quantitative investigation of the relation between the loss and the strand displacements, we measured strand traces for circular conductor and rectangular conductor. The evaluation of the flux linkage areas which are driving forces of the coupling current indicated that the flux linkage areas have strong dependence on the changing magnetic field only for the rectangular one. It also indicated that the loss should be large when the field is applied from the direction which is perpendicular to the wide surface of the conduit.</description><subject>Alternating current</subject><subject>Applied sciences</subject><subject>Cable-in-conduit conductor</subject><subject>Conductors (devices)</subject><subject>Conduits</subject><subject>Cryogenics</subject><subject>Current loss</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Flux</subject><subject>Flux linkage area</subject><subject>Inter-strand coupling loss</subject><subject>Joining</subject><subject>Linkages</subject><subject>Refrigerating engineering. Cryogenics. Food conservation</subject><subject>Shape dependence</subject><subject>Strands</subject><issn>0011-2275</issn><issn>1879-2235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMI_-II4JfiVuDlCRQGpEhc4cbDc7bq4pHGwE0T_nrRFcOQ0u6OZHe0QQjnLOePl9TqHuA0rbDykXDBW5UznAxyREZ_oKhNCFsdkxBjnw6yLU3KW0poxpkQpRuR1VvdftPbNu10htRFtosFRCH07kCsKfYzYdLQOoU3UhUiX3jncc-nNtkjBLmrMfJNBaJa97-geoQvxnJw4Wye8-MExeZndPU8fsvnT_eP0Zp6BUmWXSc4tWoWLcmFRM-RuUYC0uqwqKdREFBWXqIed62oiUJSFA82dUCCs0lrJMbk63G1j-OgxdWbjE2Bd2wZDn4wupJaV5Dvl5KCEGFKK6Ewb_cbGreHM7Oo0a_NXp9nVaZg2AwzWy58Qm8DWLtoGfPr1C1HoUhVs0N0edDh8_OkxmgQeG8CljwidWQb_f9g3K3aRPg</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Yagai, Tsuyoshi</creator><creator>Shibata, Yasuyuki</creator><creator>Ohmura, Jun</creator><creator>Tsuda, Makoto</creator><creator>Hamajima, Takataro</creator><creator>Nunoya, Yoshihiko</creator><creator>Okuno, Kiyoshi</creator><creator>Takahata, Kazuya</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100301</creationdate><title>Flux linkage areas of coupling current loops for different shape cable-in-conduit conductor</title><author>Yagai, Tsuyoshi ; Shibata, Yasuyuki ; Ohmura, Jun ; Tsuda, Makoto ; Hamajima, Takataro ; Nunoya, Yoshihiko ; Okuno, Kiyoshi ; Takahata, Kazuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-311aea4eb6bae70e1fb5c3a7699324825913e7a7617982e265fc71f24c2a47743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alternating current</topic><topic>Applied sciences</topic><topic>Cable-in-conduit conductor</topic><topic>Conductors (devices)</topic><topic>Conduits</topic><topic>Cryogenics</topic><topic>Current loss</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Flux</topic><topic>Flux linkage area</topic><topic>Inter-strand coupling loss</topic><topic>Joining</topic><topic>Linkages</topic><topic>Refrigerating engineering. Cryogenics. Food conservation</topic><topic>Shape dependence</topic><topic>Strands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yagai, Tsuyoshi</creatorcontrib><creatorcontrib>Shibata, Yasuyuki</creatorcontrib><creatorcontrib>Ohmura, Jun</creatorcontrib><creatorcontrib>Tsuda, Makoto</creatorcontrib><creatorcontrib>Hamajima, Takataro</creatorcontrib><creatorcontrib>Nunoya, Yoshihiko</creatorcontrib><creatorcontrib>Okuno, Kiyoshi</creatorcontrib><creatorcontrib>Takahata, Kazuya</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Cryogenics (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yagai, Tsuyoshi</au><au>Shibata, Yasuyuki</au><au>Ohmura, Jun</au><au>Tsuda, Makoto</au><au>Hamajima, Takataro</au><au>Nunoya, Yoshihiko</au><au>Okuno, Kiyoshi</au><au>Takahata, Kazuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flux linkage areas of coupling current loops for different shape cable-in-conduit conductor</atitle><jtitle>Cryogenics (Guildford)</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>50</volume><issue>3</issue><spage>200</spage><epage>203</epage><pages>200-203</pages><issn>0011-2275</issn><eissn>1879-2235</eissn><coden>CRYOAX</coden><abstract>For large scale application such as fusion magnets, the cable-in-conduit conductor (CICC) is the most promising conductor because of its high mechanical strength under large electromagnetic force. However, there are still remained issues about degradation of critical current of Nb 3Sn conductor and unpredictable AC loss. With regard to the second item, inter-strand coupling current loss is dominant among the AC losses and unpredictable before fabricating large scale conductor. The strand displacements which are caused by the compaction of the conductor in order to increase its current density would cause the loss. In order to do quantitative investigation of the relation between the loss and the strand displacements, we measured strand traces for circular conductor and rectangular conductor. The evaluation of the flux linkage areas which are driving forces of the coupling current indicated that the flux linkage areas have strong dependence on the changing magnetic field only for the rectangular one. It also indicated that the loss should be large when the field is applied from the direction which is perpendicular to the wide surface of the conduit.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cryogenics.2009.07.009</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0011-2275
ispartof Cryogenics (Guildford), 2010-03, Vol.50 (3), p.200-203
issn 0011-2275
1879-2235
language eng
recordid cdi_proquest_miscellaneous_753739314
source Elsevier ScienceDirect Journals Complete
subjects Alternating current
Applied sciences
Cable-in-conduit conductor
Conductors (devices)
Conduits
Cryogenics
Current loss
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Flux
Flux linkage area
Inter-strand coupling loss
Joining
Linkages
Refrigerating engineering. Cryogenics. Food conservation
Shape dependence
Strands
title Flux linkage areas of coupling current loops for different shape cable-in-conduit conductor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flux%20linkage%20areas%20of%20coupling%20current%20loops%20for%20different%20shape%20cable-in-conduit%20conductor&rft.jtitle=Cryogenics%20(Guildford)&rft.au=Yagai,%20Tsuyoshi&rft.date=2010-03-01&rft.volume=50&rft.issue=3&rft.spage=200&rft.epage=203&rft.pages=200-203&rft.issn=0011-2275&rft.eissn=1879-2235&rft.coden=CRYOAX&rft_id=info:doi/10.1016/j.cryogenics.2009.07.009&rft_dat=%3Cproquest_cross%3E753739314%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753739314&rft_id=info:pmid/&rft_els_id=S001122750900126X&rfr_iscdi=true