Flux linkage areas of coupling current loops for different shape cable-in-conduit conductor
For large scale application such as fusion magnets, the cable-in-conduit conductor (CICC) is the most promising conductor because of its high mechanical strength under large electromagnetic force. However, there are still remained issues about degradation of critical current of Nb 3Sn conductor and...
Gespeichert in:
Veröffentlicht in: | Cryogenics (Guildford) 2010-03, Vol.50 (3), p.200-203 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 203 |
---|---|
container_issue | 3 |
container_start_page | 200 |
container_title | Cryogenics (Guildford) |
container_volume | 50 |
creator | Yagai, Tsuyoshi Shibata, Yasuyuki Ohmura, Jun Tsuda, Makoto Hamajima, Takataro Nunoya, Yoshihiko Okuno, Kiyoshi Takahata, Kazuya |
description | For large scale application such as fusion magnets, the cable-in-conduit conductor (CICC) is the most promising conductor because of its high mechanical strength under large electromagnetic force. However, there are still remained issues about degradation of critical current of Nb
3Sn conductor and unpredictable AC loss. With regard to the second item, inter-strand coupling current loss is dominant among the AC losses and unpredictable before fabricating large scale conductor. The strand displacements which are caused by the compaction of the conductor in order to increase its current density would cause the loss. In order to do quantitative investigation of the relation between the loss and the strand displacements, we measured strand traces for circular conductor and rectangular conductor. The evaluation of the flux linkage areas which are driving forces of the coupling current indicated that the flux linkage areas have strong dependence on the changing magnetic field only for the rectangular one. It also indicated that the loss should be large when the field is applied from the direction which is perpendicular to the wide surface of the conduit. |
doi_str_mv | 10.1016/j.cryogenics.2009.07.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753739314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001122750900126X</els_id><sourcerecordid>753739314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-311aea4eb6bae70e1fb5c3a7699324825913e7a7617982e265fc71f24c2a47743</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMI_-II4JfiVuDlCRQGpEhc4cbDc7bq4pHGwE0T_nrRFcOQ0u6OZHe0QQjnLOePl9TqHuA0rbDykXDBW5UznAxyREZ_oKhNCFsdkxBjnw6yLU3KW0poxpkQpRuR1VvdftPbNu10htRFtosFRCH07kCsKfYzYdLQOoU3UhUiX3jncc-nNtkjBLmrMfJNBaJa97-geoQvxnJw4Wye8-MExeZndPU8fsvnT_eP0Zp6BUmWXSc4tWoWLcmFRM-RuUYC0uqwqKdREFBWXqIed62oiUJSFA82dUCCs0lrJMbk63G1j-OgxdWbjE2Bd2wZDn4wupJaV5Dvl5KCEGFKK6Ewb_cbGreHM7Oo0a_NXp9nVaZg2AwzWy58Qm8DWLtoGfPr1C1HoUhVs0N0edDh8_OkxmgQeG8CljwidWQb_f9g3K3aRPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753739314</pqid></control><display><type>article</type><title>Flux linkage areas of coupling current loops for different shape cable-in-conduit conductor</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yagai, Tsuyoshi ; Shibata, Yasuyuki ; Ohmura, Jun ; Tsuda, Makoto ; Hamajima, Takataro ; Nunoya, Yoshihiko ; Okuno, Kiyoshi ; Takahata, Kazuya</creator><creatorcontrib>Yagai, Tsuyoshi ; Shibata, Yasuyuki ; Ohmura, Jun ; Tsuda, Makoto ; Hamajima, Takataro ; Nunoya, Yoshihiko ; Okuno, Kiyoshi ; Takahata, Kazuya</creatorcontrib><description>For large scale application such as fusion magnets, the cable-in-conduit conductor (CICC) is the most promising conductor because of its high mechanical strength under large electromagnetic force. However, there are still remained issues about degradation of critical current of Nb
3Sn conductor and unpredictable AC loss. With regard to the second item, inter-strand coupling current loss is dominant among the AC losses and unpredictable before fabricating large scale conductor. The strand displacements which are caused by the compaction of the conductor in order to increase its current density would cause the loss. In order to do quantitative investigation of the relation between the loss and the strand displacements, we measured strand traces for circular conductor and rectangular conductor. The evaluation of the flux linkage areas which are driving forces of the coupling current indicated that the flux linkage areas have strong dependence on the changing magnetic field only for the rectangular one. It also indicated that the loss should be large when the field is applied from the direction which is perpendicular to the wide surface of the conduit.</description><identifier>ISSN: 0011-2275</identifier><identifier>EISSN: 1879-2235</identifier><identifier>DOI: 10.1016/j.cryogenics.2009.07.009</identifier><identifier>CODEN: CRYOAX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternating current ; Applied sciences ; Cable-in-conduit conductor ; Conductors (devices) ; Conduits ; Cryogenics ; Current loss ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Flux ; Flux linkage area ; Inter-strand coupling loss ; Joining ; Linkages ; Refrigerating engineering. Cryogenics. Food conservation ; Shape dependence ; Strands</subject><ispartof>Cryogenics (Guildford), 2010-03, Vol.50 (3), p.200-203</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-311aea4eb6bae70e1fb5c3a7699324825913e7a7617982e265fc71f24c2a47743</citedby><cites>FETCH-LOGICAL-c446t-311aea4eb6bae70e1fb5c3a7699324825913e7a7617982e265fc71f24c2a47743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cryogenics.2009.07.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22576450$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yagai, Tsuyoshi</creatorcontrib><creatorcontrib>Shibata, Yasuyuki</creatorcontrib><creatorcontrib>Ohmura, Jun</creatorcontrib><creatorcontrib>Tsuda, Makoto</creatorcontrib><creatorcontrib>Hamajima, Takataro</creatorcontrib><creatorcontrib>Nunoya, Yoshihiko</creatorcontrib><creatorcontrib>Okuno, Kiyoshi</creatorcontrib><creatorcontrib>Takahata, Kazuya</creatorcontrib><title>Flux linkage areas of coupling current loops for different shape cable-in-conduit conductor</title><title>Cryogenics (Guildford)</title><description>For large scale application such as fusion magnets, the cable-in-conduit conductor (CICC) is the most promising conductor because of its high mechanical strength under large electromagnetic force. However, there are still remained issues about degradation of critical current of Nb
3Sn conductor and unpredictable AC loss. With regard to the second item, inter-strand coupling current loss is dominant among the AC losses and unpredictable before fabricating large scale conductor. The strand displacements which are caused by the compaction of the conductor in order to increase its current density would cause the loss. In order to do quantitative investigation of the relation between the loss and the strand displacements, we measured strand traces for circular conductor and rectangular conductor. The evaluation of the flux linkage areas which are driving forces of the coupling current indicated that the flux linkage areas have strong dependence on the changing magnetic field only for the rectangular one. It also indicated that the loss should be large when the field is applied from the direction which is perpendicular to the wide surface of the conduit.</description><subject>Alternating current</subject><subject>Applied sciences</subject><subject>Cable-in-conduit conductor</subject><subject>Conductors (devices)</subject><subject>Conduits</subject><subject>Cryogenics</subject><subject>Current loss</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Flux</subject><subject>Flux linkage area</subject><subject>Inter-strand coupling loss</subject><subject>Joining</subject><subject>Linkages</subject><subject>Refrigerating engineering. Cryogenics. Food conservation</subject><subject>Shape dependence</subject><subject>Strands</subject><issn>0011-2275</issn><issn>1879-2235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMI_-II4JfiVuDlCRQGpEhc4cbDc7bq4pHGwE0T_nrRFcOQ0u6OZHe0QQjnLOePl9TqHuA0rbDykXDBW5UznAxyREZ_oKhNCFsdkxBjnw6yLU3KW0poxpkQpRuR1VvdftPbNu10htRFtosFRCH07kCsKfYzYdLQOoU3UhUiX3jncc-nNtkjBLmrMfJNBaJa97-geoQvxnJw4Wye8-MExeZndPU8fsvnT_eP0Zp6BUmWXSc4tWoWLcmFRM-RuUYC0uqwqKdREFBWXqIed62oiUJSFA82dUCCs0lrJMbk63G1j-OgxdWbjE2Bd2wZDn4wupJaV5Dvl5KCEGFKK6Ewb_cbGreHM7Oo0a_NXp9nVaZg2AwzWy58Qm8DWLtoGfPr1C1HoUhVs0N0edDh8_OkxmgQeG8CljwidWQb_f9g3K3aRPg</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Yagai, Tsuyoshi</creator><creator>Shibata, Yasuyuki</creator><creator>Ohmura, Jun</creator><creator>Tsuda, Makoto</creator><creator>Hamajima, Takataro</creator><creator>Nunoya, Yoshihiko</creator><creator>Okuno, Kiyoshi</creator><creator>Takahata, Kazuya</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100301</creationdate><title>Flux linkage areas of coupling current loops for different shape cable-in-conduit conductor</title><author>Yagai, Tsuyoshi ; Shibata, Yasuyuki ; Ohmura, Jun ; Tsuda, Makoto ; Hamajima, Takataro ; Nunoya, Yoshihiko ; Okuno, Kiyoshi ; Takahata, Kazuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-311aea4eb6bae70e1fb5c3a7699324825913e7a7617982e265fc71f24c2a47743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alternating current</topic><topic>Applied sciences</topic><topic>Cable-in-conduit conductor</topic><topic>Conductors (devices)</topic><topic>Conduits</topic><topic>Cryogenics</topic><topic>Current loss</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Flux</topic><topic>Flux linkage area</topic><topic>Inter-strand coupling loss</topic><topic>Joining</topic><topic>Linkages</topic><topic>Refrigerating engineering. Cryogenics. Food conservation</topic><topic>Shape dependence</topic><topic>Strands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yagai, Tsuyoshi</creatorcontrib><creatorcontrib>Shibata, Yasuyuki</creatorcontrib><creatorcontrib>Ohmura, Jun</creatorcontrib><creatorcontrib>Tsuda, Makoto</creatorcontrib><creatorcontrib>Hamajima, Takataro</creatorcontrib><creatorcontrib>Nunoya, Yoshihiko</creatorcontrib><creatorcontrib>Okuno, Kiyoshi</creatorcontrib><creatorcontrib>Takahata, Kazuya</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Cryogenics (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yagai, Tsuyoshi</au><au>Shibata, Yasuyuki</au><au>Ohmura, Jun</au><au>Tsuda, Makoto</au><au>Hamajima, Takataro</au><au>Nunoya, Yoshihiko</au><au>Okuno, Kiyoshi</au><au>Takahata, Kazuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flux linkage areas of coupling current loops for different shape cable-in-conduit conductor</atitle><jtitle>Cryogenics (Guildford)</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>50</volume><issue>3</issue><spage>200</spage><epage>203</epage><pages>200-203</pages><issn>0011-2275</issn><eissn>1879-2235</eissn><coden>CRYOAX</coden><abstract>For large scale application such as fusion magnets, the cable-in-conduit conductor (CICC) is the most promising conductor because of its high mechanical strength under large electromagnetic force. However, there are still remained issues about degradation of critical current of Nb
3Sn conductor and unpredictable AC loss. With regard to the second item, inter-strand coupling current loss is dominant among the AC losses and unpredictable before fabricating large scale conductor. The strand displacements which are caused by the compaction of the conductor in order to increase its current density would cause the loss. In order to do quantitative investigation of the relation between the loss and the strand displacements, we measured strand traces for circular conductor and rectangular conductor. The evaluation of the flux linkage areas which are driving forces of the coupling current indicated that the flux linkage areas have strong dependence on the changing magnetic field only for the rectangular one. It also indicated that the loss should be large when the field is applied from the direction which is perpendicular to the wide surface of the conduit.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cryogenics.2009.07.009</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0011-2275 |
ispartof | Cryogenics (Guildford), 2010-03, Vol.50 (3), p.200-203 |
issn | 0011-2275 1879-2235 |
language | eng |
recordid | cdi_proquest_miscellaneous_753739314 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Alternating current Applied sciences Cable-in-conduit conductor Conductors (devices) Conduits Cryogenics Current loss Energy Energy. Thermal use of fuels Exact sciences and technology Flux Flux linkage area Inter-strand coupling loss Joining Linkages Refrigerating engineering. Cryogenics. Food conservation Shape dependence Strands |
title | Flux linkage areas of coupling current loops for different shape cable-in-conduit conductor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flux%20linkage%20areas%20of%20coupling%20current%20loops%20for%20different%20shape%20cable-in-conduit%20conductor&rft.jtitle=Cryogenics%20(Guildford)&rft.au=Yagai,%20Tsuyoshi&rft.date=2010-03-01&rft.volume=50&rft.issue=3&rft.spage=200&rft.epage=203&rft.pages=200-203&rft.issn=0011-2275&rft.eissn=1879-2235&rft.coden=CRYOAX&rft_id=info:doi/10.1016/j.cryogenics.2009.07.009&rft_dat=%3Cproquest_cross%3E753739314%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753739314&rft_id=info:pmid/&rft_els_id=S001122750900126X&rfr_iscdi=true |