Improvement in heat resistance of NOx trap catalyst using Ti–Na binary metal oxide as NOx trap material

The purpose of this study was to identify suitable base materials for NOx trap catalysts from the viewpoint of heat resistance. First, suitable elements among alkali metals (M: K, Na, Li) and alkaline earth metals (M: Ba, Ca, Sr, Mg) were evaluated using M–Rh,Pt/Al2O3. Na was found to be the most su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2010-04, Vol.95 (3-4), p.320-326
Hauptverfasser: Iizuka, Hidehiro, Kaneeda, Masato, Shinotsuka, Norihiro, Kuroda, Osamu, Higashiyama, Kazutoshi, Miyamoto, Akira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 326
container_issue 3-4
container_start_page 320
container_title Applied catalysis. B, Environmental
container_volume 95
creator Iizuka, Hidehiro
Kaneeda, Masato
Shinotsuka, Norihiro
Kuroda, Osamu
Higashiyama, Kazutoshi
Miyamoto, Akira
description The purpose of this study was to identify suitable base materials for NOx trap catalysts from the viewpoint of heat resistance. First, suitable elements among alkali metals (M: K, Na, Li) and alkaline earth metals (M: Ba, Ca, Sr, Mg) were evaluated using M–Rh,Pt/Al2O3. Na was found to be the most suitable element that combines NOx trap performance with hydrocarbon purification performance after heat treatment at 973K. Moreover, the effects of binary metal oxides with Na and M′ (Zr, Fe, W, Mo, Ti) were evaluated to improve the heat resistance of Na–Rh,Pt/Al2O3. The ranking of the NOx trap activity of M′ was Ti>none>Fe>W>Zr>Mo; Ti was the most suitable additional element for improving heat resistance of Na–Rh,Pt/Al2O3. The maximum amount of NOx conversion and the maximum number of base sites of Ti,Na–Rh,Pt/Al2O3 were reached at a Ti/Na mol ratio of 0.1. It was inferred that the addition of Ti to Na–Rh,Pt/Al2O3 formed a Ti–Na binary metal oxide from catalyst characterisation by X-ray diffraction and X-ray photoelectron spectrometry, and this Ti–Na binary metal oxide improved the thermal stability of Na–Rh,Pt/Al2O3. Finally, from vehicle tests, it was clear that the NOx trap catalyst, which supported Ti–Na binary metal oxide, exhibited high heat resistance.
doi_str_mv 10.1016/j.apcatb.2010.01.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753739013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337310000238</els_id><sourcerecordid>753739013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-5826438cf2d79969456ee190614104eeb2221806d69fee8350aa666f0a7d95283</originalsourceid><addsrcrecordid>eNp9kM1KJDEUhcMwA9Oj8wazyGZwVe1NUpVKbQRpdGwQ3TjrcDt1S9PUT0-Sbuyd7-Ab-iQTadGdcCFwc849nI-xXwLmAoQ-Xc9x4zCt5hLyCkQe-MJmwtSqUMaor2wGjdSFUrX6zn7EuAYAqaSZMb8cNmHa0UBj4n7kD4SJB4o-Jhwd8anjN7ePPAXc8ByB_T4mvo1-vOd3_uXp-Qb5yo8Y9nyg_MunR98Sx_jhGjBR8Ngfs28d9pF-vr1H7O_lxd3iqri-_bNcnF8XTmmTispIXSrjOtnWTaObstJEogEtSgEl0UpKKQzoVjcdkVEVIGqtO8C6bSpp1BE7OdzNvf5tKSY7-Oio73GkaRttXWUKDQiVleVB6cIUY6DOboIfchcrwL6CtWt7AGtfwVoQeSDbfr8FYHTYdyGD8vHdK2WuAJXMurODjnLbnadgo_OUobY-kEu2nfznQf8BYiOQJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753739013</pqid></control><display><type>article</type><title>Improvement in heat resistance of NOx trap catalyst using Ti–Na binary metal oxide as NOx trap material</title><source>Elsevier ScienceDirect Journals</source><creator>Iizuka, Hidehiro ; Kaneeda, Masato ; Shinotsuka, Norihiro ; Kuroda, Osamu ; Higashiyama, Kazutoshi ; Miyamoto, Akira</creator><creatorcontrib>Iizuka, Hidehiro ; Kaneeda, Masato ; Shinotsuka, Norihiro ; Kuroda, Osamu ; Higashiyama, Kazutoshi ; Miyamoto, Akira</creatorcontrib><description>The purpose of this study was to identify suitable base materials for NOx trap catalysts from the viewpoint of heat resistance. First, suitable elements among alkali metals (M: K, Na, Li) and alkaline earth metals (M: Ba, Ca, Sr, Mg) were evaluated using M–Rh,Pt/Al2O3. Na was found to be the most suitable element that combines NOx trap performance with hydrocarbon purification performance after heat treatment at 973K. Moreover, the effects of binary metal oxides with Na and M′ (Zr, Fe, W, Mo, Ti) were evaluated to improve the heat resistance of Na–Rh,Pt/Al2O3. The ranking of the NOx trap activity of M′ was Ti&gt;none&gt;Fe&gt;W&gt;Zr&gt;Mo; Ti was the most suitable additional element for improving heat resistance of Na–Rh,Pt/Al2O3. The maximum amount of NOx conversion and the maximum number of base sites of Ti,Na–Rh,Pt/Al2O3 were reached at a Ti/Na mol ratio of 0.1. It was inferred that the addition of Ti to Na–Rh,Pt/Al2O3 formed a Ti–Na binary metal oxide from catalyst characterisation by X-ray diffraction and X-ray photoelectron spectrometry, and this Ti–Na binary metal oxide improved the thermal stability of Na–Rh,Pt/Al2O3. Finally, from vehicle tests, it was clear that the NOx trap catalyst, which supported Ti–Na binary metal oxide, exhibited high heat resistance.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2010.01.010</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Alkali metals ; Alkaline earth metals ; Binary metal oxide ; Catalysis ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Heat resistance ; NOx trap catalyst ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Applied catalysis. B, Environmental, 2010-04, Vol.95 (3-4), p.320-326</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-5826438cf2d79969456ee190614104eeb2221806d69fee8350aa666f0a7d95283</citedby><cites>FETCH-LOGICAL-c368t-5826438cf2d79969456ee190614104eeb2221806d69fee8350aa666f0a7d95283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926337310000238$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22582052$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Iizuka, Hidehiro</creatorcontrib><creatorcontrib>Kaneeda, Masato</creatorcontrib><creatorcontrib>Shinotsuka, Norihiro</creatorcontrib><creatorcontrib>Kuroda, Osamu</creatorcontrib><creatorcontrib>Higashiyama, Kazutoshi</creatorcontrib><creatorcontrib>Miyamoto, Akira</creatorcontrib><title>Improvement in heat resistance of NOx trap catalyst using Ti–Na binary metal oxide as NOx trap material</title><title>Applied catalysis. B, Environmental</title><description>The purpose of this study was to identify suitable base materials for NOx trap catalysts from the viewpoint of heat resistance. First, suitable elements among alkali metals (M: K, Na, Li) and alkaline earth metals (M: Ba, Ca, Sr, Mg) were evaluated using M–Rh,Pt/Al2O3. Na was found to be the most suitable element that combines NOx trap performance with hydrocarbon purification performance after heat treatment at 973K. Moreover, the effects of binary metal oxides with Na and M′ (Zr, Fe, W, Mo, Ti) were evaluated to improve the heat resistance of Na–Rh,Pt/Al2O3. The ranking of the NOx trap activity of M′ was Ti&gt;none&gt;Fe&gt;W&gt;Zr&gt;Mo; Ti was the most suitable additional element for improving heat resistance of Na–Rh,Pt/Al2O3. The maximum amount of NOx conversion and the maximum number of base sites of Ti,Na–Rh,Pt/Al2O3 were reached at a Ti/Na mol ratio of 0.1. It was inferred that the addition of Ti to Na–Rh,Pt/Al2O3 formed a Ti–Na binary metal oxide from catalyst characterisation by X-ray diffraction and X-ray photoelectron spectrometry, and this Ti–Na binary metal oxide improved the thermal stability of Na–Rh,Pt/Al2O3. Finally, from vehicle tests, it was clear that the NOx trap catalyst, which supported Ti–Na binary metal oxide, exhibited high heat resistance.</description><subject>Alkali metals</subject><subject>Alkaline earth metals</subject><subject>Binary metal oxide</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Heat resistance</subject><subject>NOx trap catalyst</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KJDEUhcMwA9Oj8wazyGZwVe1NUpVKbQRpdGwQ3TjrcDt1S9PUT0-Sbuyd7-Ab-iQTadGdcCFwc849nI-xXwLmAoQ-Xc9x4zCt5hLyCkQe-MJmwtSqUMaor2wGjdSFUrX6zn7EuAYAqaSZMb8cNmHa0UBj4n7kD4SJB4o-Jhwd8anjN7ePPAXc8ByB_T4mvo1-vOd3_uXp-Qb5yo8Y9nyg_MunR98Sx_jhGjBR8Ngfs28d9pF-vr1H7O_lxd3iqri-_bNcnF8XTmmTispIXSrjOtnWTaObstJEogEtSgEl0UpKKQzoVjcdkVEVIGqtO8C6bSpp1BE7OdzNvf5tKSY7-Oio73GkaRttXWUKDQiVleVB6cIUY6DOboIfchcrwL6CtWt7AGtfwVoQeSDbfr8FYHTYdyGD8vHdK2WuAJXMurODjnLbnadgo_OUobY-kEu2nfznQf8BYiOQJA</recordid><startdate>20100406</startdate><enddate>20100406</enddate><creator>Iizuka, Hidehiro</creator><creator>Kaneeda, Masato</creator><creator>Shinotsuka, Norihiro</creator><creator>Kuroda, Osamu</creator><creator>Higashiyama, Kazutoshi</creator><creator>Miyamoto, Akira</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7SU</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20100406</creationdate><title>Improvement in heat resistance of NOx trap catalyst using Ti–Na binary metal oxide as NOx trap material</title><author>Iizuka, Hidehiro ; Kaneeda, Masato ; Shinotsuka, Norihiro ; Kuroda, Osamu ; Higashiyama, Kazutoshi ; Miyamoto, Akira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-5826438cf2d79969456ee190614104eeb2221806d69fee8350aa666f0a7d95283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alkali metals</topic><topic>Alkaline earth metals</topic><topic>Binary metal oxide</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Heat resistance</topic><topic>NOx trap catalyst</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iizuka, Hidehiro</creatorcontrib><creatorcontrib>Kaneeda, Masato</creatorcontrib><creatorcontrib>Shinotsuka, Norihiro</creatorcontrib><creatorcontrib>Kuroda, Osamu</creatorcontrib><creatorcontrib>Higashiyama, Kazutoshi</creatorcontrib><creatorcontrib>Miyamoto, Akira</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iizuka, Hidehiro</au><au>Kaneeda, Masato</au><au>Shinotsuka, Norihiro</au><au>Kuroda, Osamu</au><au>Higashiyama, Kazutoshi</au><au>Miyamoto, Akira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement in heat resistance of NOx trap catalyst using Ti–Na binary metal oxide as NOx trap material</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2010-04-06</date><risdate>2010</risdate><volume>95</volume><issue>3-4</issue><spage>320</spage><epage>326</epage><pages>320-326</pages><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>The purpose of this study was to identify suitable base materials for NOx trap catalysts from the viewpoint of heat resistance. First, suitable elements among alkali metals (M: K, Na, Li) and alkaline earth metals (M: Ba, Ca, Sr, Mg) were evaluated using M–Rh,Pt/Al2O3. Na was found to be the most suitable element that combines NOx trap performance with hydrocarbon purification performance after heat treatment at 973K. Moreover, the effects of binary metal oxides with Na and M′ (Zr, Fe, W, Mo, Ti) were evaluated to improve the heat resistance of Na–Rh,Pt/Al2O3. The ranking of the NOx trap activity of M′ was Ti&gt;none&gt;Fe&gt;W&gt;Zr&gt;Mo; Ti was the most suitable additional element for improving heat resistance of Na–Rh,Pt/Al2O3. The maximum amount of NOx conversion and the maximum number of base sites of Ti,Na–Rh,Pt/Al2O3 were reached at a Ti/Na mol ratio of 0.1. It was inferred that the addition of Ti to Na–Rh,Pt/Al2O3 formed a Ti–Na binary metal oxide from catalyst characterisation by X-ray diffraction and X-ray photoelectron spectrometry, and this Ti–Na binary metal oxide improved the thermal stability of Na–Rh,Pt/Al2O3. Finally, from vehicle tests, it was clear that the NOx trap catalyst, which supported Ti–Na binary metal oxide, exhibited high heat resistance.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2010.01.010</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2010-04, Vol.95 (3-4), p.320-326
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_miscellaneous_753739013
source Elsevier ScienceDirect Journals
subjects Alkali metals
Alkaline earth metals
Binary metal oxide
Catalysis
Chemistry
Exact sciences and technology
General and physical chemistry
Heat resistance
NOx trap catalyst
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Improvement in heat resistance of NOx trap catalyst using Ti–Na binary metal oxide as NOx trap material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20in%20heat%20resistance%20of%20NOx%20trap%20catalyst%20using%20Ti%E2%80%93Na%20binary%20metal%20oxide%20as%20NOx%20trap%20material&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Iizuka,%20Hidehiro&rft.date=2010-04-06&rft.volume=95&rft.issue=3-4&rft.spage=320&rft.epage=326&rft.pages=320-326&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2010.01.010&rft_dat=%3Cproquest_cross%3E753739013%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753739013&rft_id=info:pmid/&rft_els_id=S0926337310000238&rfr_iscdi=true