Numerical study of the rheology of rigid fillers suspended in long-chain branched polymer under planar extensional flow

We report a detailed numerical study of the rheology of two-dimensional rigid fillers suspended in branched polymer melt under planar extensional flow. The polymer melt is modelled using the pom-pom constitutive equation. The numerical method uses a finite element solution of the flow in a unit cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of non-Newtonian fluid mechanics 2010-03, Vol.165 (5), p.281-291
Hauptverfasser: Ahamadi, M., Harlen, O.G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report a detailed numerical study of the rheology of two-dimensional rigid fillers suspended in branched polymer melt under planar extensional flow. The polymer melt is modelled using the pom-pom constitutive equation. The numerical method uses a finite element solution of the flow in a unit cell within the self-replicating lattice for planar extensional flow identified by Kraynik and Reinelt [Int. J. Multiphase flow 18 (1992) 1045]. This is implemented using a quotient space representation that maps all points in space onto points within the unit cell. We show that the Kraynik and Reinelt cell allows simulations of suspensions under planar extensional flow to be conducted to large strains in a truly periodic cell. The influence of both the pom-pom parameters and the particle area fraction on the rheology of the suspension are investigated. We find a reduction in the degree of extension-rate thickening with the increase of both particles concentration and Weissenberg numbers in agreement with published experimental and numerical findings on other viscoelastic models. This reduction is found to be due to flow disturbance created by the particles which disrupts the alignment of backbone tube segments with the extensional axis.
ISSN:0377-0257
1873-2631
DOI:10.1016/j.jnnfm.2010.01.002