Optimized U -type designs on flexible regions
The concept of a flexible region describes an infinite variety of symmetrical shapes to enclose a particular region of interest within a space. In experimental design, the properties of a function on the region of interest are analyzed based on a set of design points. The choice of design points can...
Gespeichert in:
Veröffentlicht in: | Computational statistics & data analysis 2010-06, Vol.54 (6), p.1505-1515 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1515 |
---|---|
container_issue | 6 |
container_start_page | 1505 |
container_title | Computational statistics & data analysis |
container_volume | 54 |
creator | Lin, D.K.J. Sharpe, C. Winker, P. |
description | The concept of a flexible region describes an infinite variety of symmetrical shapes to enclose a particular region of interest within a space. In experimental design, the properties of a function on the region of interest are analyzed based on a set of design points. The choice of design points can be made based on some discrepancy criterion. The generation of design points on a flexible region is investigated. A recently proposed discrepancy measure, the central composite discrepancy, is used for this purpose. The optimization heuristic Threshold Accepting is applied to generate low-discrepancy
U
-type designs. The proposed algorithm is capable of constructing optimal
U
-type designs under various flexible experimental regions in two or more dimensions. The illustrative results for the two-dimensional case indicate that by using an optimization heuristic in combination with an appropriate discrepancy measure produces high-quality experimental designs on flexible regions. |
doi_str_mv | 10.1016/j.csda.2010.01.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_repec</sourceid><recordid>TN_cdi_proquest_miscellaneous_753736753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947310000472</els_id><sourcerecordid>753736753</sourcerecordid><originalsourceid>FETCH-LOGICAL-e339t-dc1a46df111a7147d8763c52a0b2abc41fc919c52b85648bfbbb10cb2faa23033</originalsourceid><addsrcrecordid>eNo9UctqwzAQFKWFpml_oCdfSk92tZJl2dBLCX1BIJfmLCR5nSr4VcsJTb--chN6mF0YhplllpBboAlQyB62ifWlThgNBIWEcnZGZpBLFksu2DmZBZGMi1TyS3Ll_ZZSylKZz0i86kfXuB8so3UUj4ceoxK927Q-6tqoqvHbmRqjATeua_01uah07fHmtOdk_fL8sXiLl6vX98XTMkbOizEuLeg0KysA0BJSWeYy41YwTQ3TxqZQ2QKKQJhcZGluKmMMUGtYpTXjlPM5uT_69kP3tUM_qsZ5i3WtW-x2XknBJc_CDMrlUTlgj1b1g2v0cFCIOBXSarVXXIs0jEPA1E9YLiAL6ANAUKFAgFCfYxPs7k7B2ltdV4NurfP_towJRgWTQfd41GFoYe9wUN46bC2WbkA7qrJzKkRNv1FbNZ2i_rIpqPAb_gtpeIF-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753736753</pqid></control><display><type>article</type><title>Optimized U -type designs on flexible regions</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Lin, D.K.J. ; Sharpe, C. ; Winker, P.</creator><creatorcontrib>Lin, D.K.J. ; Sharpe, C. ; Winker, P.</creatorcontrib><description>The concept of a flexible region describes an infinite variety of symmetrical shapes to enclose a particular region of interest within a space. In experimental design, the properties of a function on the region of interest are analyzed based on a set of design points. The choice of design points can be made based on some discrepancy criterion. The generation of design points on a flexible region is investigated. A recently proposed discrepancy measure, the central composite discrepancy, is used for this purpose. The optimization heuristic Threshold Accepting is applied to generate low-discrepancy
U
-type designs. The proposed algorithm is capable of constructing optimal
U
-type designs under various flexible experimental regions in two or more dimensions. The illustrative results for the two-dimensional case indicate that by using an optimization heuristic in combination with an appropriate discrepancy measure produces high-quality experimental designs on flexible regions.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2010.01.032</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>[formula omitted]-type design ; Algorithms ; Central composite discrepancy ; Central composite discrepancy Experimental design Flexible regions Threshold Accepting U-type design ; Criteria ; Data processing ; Design engineering ; Exact sciences and technology ; Experimental design ; Flexible regions ; General topics ; Heuristic ; Mathematical analysis ; Mathematics ; Multivariate analysis ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in probability and statistics ; Optimization ; Probability and statistics ; Sciences and techniques of general use ; Statistics ; Threshold Accepting</subject><ispartof>Computational statistics & data analysis, 2010-06, Vol.54 (6), p.1505-1515</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947310000472$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,3994,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22520527$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeecsdana/v_3a54_3ay_3a2010_3ai_3a6_3ap_3a1505-1515.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, D.K.J.</creatorcontrib><creatorcontrib>Sharpe, C.</creatorcontrib><creatorcontrib>Winker, P.</creatorcontrib><title>Optimized U -type designs on flexible regions</title><title>Computational statistics & data analysis</title><description>The concept of a flexible region describes an infinite variety of symmetrical shapes to enclose a particular region of interest within a space. In experimental design, the properties of a function on the region of interest are analyzed based on a set of design points. The choice of design points can be made based on some discrepancy criterion. The generation of design points on a flexible region is investigated. A recently proposed discrepancy measure, the central composite discrepancy, is used for this purpose. The optimization heuristic Threshold Accepting is applied to generate low-discrepancy
U
-type designs. The proposed algorithm is capable of constructing optimal
U
-type designs under various flexible experimental regions in two or more dimensions. The illustrative results for the two-dimensional case indicate that by using an optimization heuristic in combination with an appropriate discrepancy measure produces high-quality experimental designs on flexible regions.</description><subject>[formula omitted]-type design</subject><subject>Algorithms</subject><subject>Central composite discrepancy</subject><subject>Central composite discrepancy Experimental design Flexible regions Threshold Accepting U-type design</subject><subject>Criteria</subject><subject>Data processing</subject><subject>Design engineering</subject><subject>Exact sciences and technology</subject><subject>Experimental design</subject><subject>Flexible regions</subject><subject>General topics</subject><subject>Heuristic</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in probability and statistics</subject><subject>Optimization</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Threshold Accepting</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNo9UctqwzAQFKWFpml_oCdfSk92tZJl2dBLCX1BIJfmLCR5nSr4VcsJTb--chN6mF0YhplllpBboAlQyB62ifWlThgNBIWEcnZGZpBLFksu2DmZBZGMi1TyS3Ll_ZZSylKZz0i86kfXuB8so3UUj4ceoxK927Q-6tqoqvHbmRqjATeua_01uah07fHmtOdk_fL8sXiLl6vX98XTMkbOizEuLeg0KysA0BJSWeYy41YwTQ3TxqZQ2QKKQJhcZGluKmMMUGtYpTXjlPM5uT_69kP3tUM_qsZ5i3WtW-x2XknBJc_CDMrlUTlgj1b1g2v0cFCIOBXSarVXXIs0jEPA1E9YLiAL6ANAUKFAgFCfYxPs7k7B2ltdV4NurfP_towJRgWTQfd41GFoYe9wUN46bC2WbkA7qrJzKkRNv1FbNZ2i_rIpqPAb_gtpeIF-</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Lin, D.K.J.</creator><creator>Sharpe, C.</creator><creator>Winker, P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100601</creationdate><title>Optimized U -type designs on flexible regions</title><author>Lin, D.K.J. ; Sharpe, C. ; Winker, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e339t-dc1a46df111a7147d8763c52a0b2abc41fc919c52b85648bfbbb10cb2faa23033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>[formula omitted]-type design</topic><topic>Algorithms</topic><topic>Central composite discrepancy</topic><topic>Central composite discrepancy Experimental design Flexible regions Threshold Accepting U-type design</topic><topic>Criteria</topic><topic>Data processing</topic><topic>Design engineering</topic><topic>Exact sciences and technology</topic><topic>Experimental design</topic><topic>Flexible regions</topic><topic>General topics</topic><topic>Heuristic</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in probability and statistics</topic><topic>Optimization</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Threshold Accepting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, D.K.J.</creatorcontrib><creatorcontrib>Sharpe, C.</creatorcontrib><creatorcontrib>Winker, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics & data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, D.K.J.</au><au>Sharpe, C.</au><au>Winker, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized U -type designs on flexible regions</atitle><jtitle>Computational statistics & data analysis</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>54</volume><issue>6</issue><spage>1505</spage><epage>1515</epage><pages>1505-1515</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>The concept of a flexible region describes an infinite variety of symmetrical shapes to enclose a particular region of interest within a space. In experimental design, the properties of a function on the region of interest are analyzed based on a set of design points. The choice of design points can be made based on some discrepancy criterion. The generation of design points on a flexible region is investigated. A recently proposed discrepancy measure, the central composite discrepancy, is used for this purpose. The optimization heuristic Threshold Accepting is applied to generate low-discrepancy
U
-type designs. The proposed algorithm is capable of constructing optimal
U
-type designs under various flexible experimental regions in two or more dimensions. The illustrative results for the two-dimensional case indicate that by using an optimization heuristic in combination with an appropriate discrepancy measure produces high-quality experimental designs on flexible regions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2010.01.032</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9473 |
ispartof | Computational statistics & data analysis, 2010-06, Vol.54 (6), p.1505-1515 |
issn | 0167-9473 1872-7352 |
language | eng |
recordid | cdi_proquest_miscellaneous_753736753 |
source | RePEc; Elsevier ScienceDirect Journals |
subjects | [formula omitted]-type design Algorithms Central composite discrepancy Central composite discrepancy Experimental design Flexible regions Threshold Accepting U-type design Criteria Data processing Design engineering Exact sciences and technology Experimental design Flexible regions General topics Heuristic Mathematical analysis Mathematics Multivariate analysis Numerical analysis Numerical analysis. Scientific computation Numerical methods in probability and statistics Optimization Probability and statistics Sciences and techniques of general use Statistics Threshold Accepting |
title | Optimized U -type designs on flexible regions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A29%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_repec&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20U%20-type%20designs%20on%20flexible%20regions&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Lin,%20D.K.J.&rft.date=2010-06-01&rft.volume=54&rft.issue=6&rft.spage=1505&rft.epage=1515&rft.pages=1505-1515&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2010.01.032&rft_dat=%3Cproquest_repec%3E753736753%3C/proquest_repec%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753736753&rft_id=info:pmid/&rft_els_id=S0167947310000472&rfr_iscdi=true |