Optimized U -type designs on flexible regions

The concept of a flexible region describes an infinite variety of symmetrical shapes to enclose a particular region of interest within a space. In experimental design, the properties of a function on the region of interest are analyzed based on a set of design points. The choice of design points can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2010-06, Vol.54 (6), p.1505-1515
Hauptverfasser: Lin, D.K.J., Sharpe, C., Winker, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1515
container_issue 6
container_start_page 1505
container_title Computational statistics & data analysis
container_volume 54
creator Lin, D.K.J.
Sharpe, C.
Winker, P.
description The concept of a flexible region describes an infinite variety of symmetrical shapes to enclose a particular region of interest within a space. In experimental design, the properties of a function on the region of interest are analyzed based on a set of design points. The choice of design points can be made based on some discrepancy criterion. The generation of design points on a flexible region is investigated. A recently proposed discrepancy measure, the central composite discrepancy, is used for this purpose. The optimization heuristic Threshold Accepting is applied to generate low-discrepancy U -type designs. The proposed algorithm is capable of constructing optimal U -type designs under various flexible experimental regions in two or more dimensions. The illustrative results for the two-dimensional case indicate that by using an optimization heuristic in combination with an appropriate discrepancy measure produces high-quality experimental designs on flexible regions.
doi_str_mv 10.1016/j.csda.2010.01.032
format Article
fullrecord <record><control><sourceid>proquest_repec</sourceid><recordid>TN_cdi_proquest_miscellaneous_753736753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947310000472</els_id><sourcerecordid>753736753</sourcerecordid><originalsourceid>FETCH-LOGICAL-e339t-dc1a46df111a7147d8763c52a0b2abc41fc919c52b85648bfbbb10cb2faa23033</originalsourceid><addsrcrecordid>eNo9UctqwzAQFKWFpml_oCdfSk92tZJl2dBLCX1BIJfmLCR5nSr4VcsJTb--chN6mF0YhplllpBboAlQyB62ifWlThgNBIWEcnZGZpBLFksu2DmZBZGMi1TyS3Ll_ZZSylKZz0i86kfXuB8so3UUj4ceoxK927Q-6tqoqvHbmRqjATeua_01uah07fHmtOdk_fL8sXiLl6vX98XTMkbOizEuLeg0KysA0BJSWeYy41YwTQ3TxqZQ2QKKQJhcZGluKmMMUGtYpTXjlPM5uT_69kP3tUM_qsZ5i3WtW-x2XknBJc_CDMrlUTlgj1b1g2v0cFCIOBXSarVXXIs0jEPA1E9YLiAL6ANAUKFAgFCfYxPs7k7B2ltdV4NurfP_towJRgWTQfd41GFoYe9wUN46bC2WbkA7qrJzKkRNv1FbNZ2i_rIpqPAb_gtpeIF-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753736753</pqid></control><display><type>article</type><title>Optimized U -type designs on flexible regions</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Lin, D.K.J. ; Sharpe, C. ; Winker, P.</creator><creatorcontrib>Lin, D.K.J. ; Sharpe, C. ; Winker, P.</creatorcontrib><description>The concept of a flexible region describes an infinite variety of symmetrical shapes to enclose a particular region of interest within a space. In experimental design, the properties of a function on the region of interest are analyzed based on a set of design points. The choice of design points can be made based on some discrepancy criterion. The generation of design points on a flexible region is investigated. A recently proposed discrepancy measure, the central composite discrepancy, is used for this purpose. The optimization heuristic Threshold Accepting is applied to generate low-discrepancy U -type designs. The proposed algorithm is capable of constructing optimal U -type designs under various flexible experimental regions in two or more dimensions. The illustrative results for the two-dimensional case indicate that by using an optimization heuristic in combination with an appropriate discrepancy measure produces high-quality experimental designs on flexible regions.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2010.01.032</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>[formula omitted]-type design ; Algorithms ; Central composite discrepancy ; Central composite discrepancy Experimental design Flexible regions Threshold Accepting U-type design ; Criteria ; Data processing ; Design engineering ; Exact sciences and technology ; Experimental design ; Flexible regions ; General topics ; Heuristic ; Mathematical analysis ; Mathematics ; Multivariate analysis ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in probability and statistics ; Optimization ; Probability and statistics ; Sciences and techniques of general use ; Statistics ; Threshold Accepting</subject><ispartof>Computational statistics &amp; data analysis, 2010-06, Vol.54 (6), p.1505-1515</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947310000472$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,3994,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22520527$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeecsdana/v_3a54_3ay_3a2010_3ai_3a6_3ap_3a1505-1515.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, D.K.J.</creatorcontrib><creatorcontrib>Sharpe, C.</creatorcontrib><creatorcontrib>Winker, P.</creatorcontrib><title>Optimized U -type designs on flexible regions</title><title>Computational statistics &amp; data analysis</title><description>The concept of a flexible region describes an infinite variety of symmetrical shapes to enclose a particular region of interest within a space. In experimental design, the properties of a function on the region of interest are analyzed based on a set of design points. The choice of design points can be made based on some discrepancy criterion. The generation of design points on a flexible region is investigated. A recently proposed discrepancy measure, the central composite discrepancy, is used for this purpose. The optimization heuristic Threshold Accepting is applied to generate low-discrepancy U -type designs. The proposed algorithm is capable of constructing optimal U -type designs under various flexible experimental regions in two or more dimensions. The illustrative results for the two-dimensional case indicate that by using an optimization heuristic in combination with an appropriate discrepancy measure produces high-quality experimental designs on flexible regions.</description><subject>[formula omitted]-type design</subject><subject>Algorithms</subject><subject>Central composite discrepancy</subject><subject>Central composite discrepancy Experimental design Flexible regions Threshold Accepting U-type design</subject><subject>Criteria</subject><subject>Data processing</subject><subject>Design engineering</subject><subject>Exact sciences and technology</subject><subject>Experimental design</subject><subject>Flexible regions</subject><subject>General topics</subject><subject>Heuristic</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in probability and statistics</subject><subject>Optimization</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Threshold Accepting</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNo9UctqwzAQFKWFpml_oCdfSk92tZJl2dBLCX1BIJfmLCR5nSr4VcsJTb--chN6mF0YhplllpBboAlQyB62ifWlThgNBIWEcnZGZpBLFksu2DmZBZGMi1TyS3Ll_ZZSylKZz0i86kfXuB8so3UUj4ceoxK927Q-6tqoqvHbmRqjATeua_01uah07fHmtOdk_fL8sXiLl6vX98XTMkbOizEuLeg0KysA0BJSWeYy41YwTQ3TxqZQ2QKKQJhcZGluKmMMUGtYpTXjlPM5uT_69kP3tUM_qsZ5i3WtW-x2XknBJc_CDMrlUTlgj1b1g2v0cFCIOBXSarVXXIs0jEPA1E9YLiAL6ANAUKFAgFCfYxPs7k7B2ltdV4NurfP_towJRgWTQfd41GFoYe9wUN46bC2WbkA7qrJzKkRNv1FbNZ2i_rIpqPAb_gtpeIF-</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Lin, D.K.J.</creator><creator>Sharpe, C.</creator><creator>Winker, P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100601</creationdate><title>Optimized U -type designs on flexible regions</title><author>Lin, D.K.J. ; Sharpe, C. ; Winker, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e339t-dc1a46df111a7147d8763c52a0b2abc41fc919c52b85648bfbbb10cb2faa23033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>[formula omitted]-type design</topic><topic>Algorithms</topic><topic>Central composite discrepancy</topic><topic>Central composite discrepancy Experimental design Flexible regions Threshold Accepting U-type design</topic><topic>Criteria</topic><topic>Data processing</topic><topic>Design engineering</topic><topic>Exact sciences and technology</topic><topic>Experimental design</topic><topic>Flexible regions</topic><topic>General topics</topic><topic>Heuristic</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in probability and statistics</topic><topic>Optimization</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Threshold Accepting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, D.K.J.</creatorcontrib><creatorcontrib>Sharpe, C.</creatorcontrib><creatorcontrib>Winker, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, D.K.J.</au><au>Sharpe, C.</au><au>Winker, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized U -type designs on flexible regions</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>54</volume><issue>6</issue><spage>1505</spage><epage>1515</epage><pages>1505-1515</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>The concept of a flexible region describes an infinite variety of symmetrical shapes to enclose a particular region of interest within a space. In experimental design, the properties of a function on the region of interest are analyzed based on a set of design points. The choice of design points can be made based on some discrepancy criterion. The generation of design points on a flexible region is investigated. A recently proposed discrepancy measure, the central composite discrepancy, is used for this purpose. The optimization heuristic Threshold Accepting is applied to generate low-discrepancy U -type designs. The proposed algorithm is capable of constructing optimal U -type designs under various flexible experimental regions in two or more dimensions. The illustrative results for the two-dimensional case indicate that by using an optimization heuristic in combination with an appropriate discrepancy measure produces high-quality experimental designs on flexible regions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2010.01.032</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2010-06, Vol.54 (6), p.1505-1515
issn 0167-9473
1872-7352
language eng
recordid cdi_proquest_miscellaneous_753736753
source RePEc; Elsevier ScienceDirect Journals
subjects [formula omitted]-type design
Algorithms
Central composite discrepancy
Central composite discrepancy Experimental design Flexible regions Threshold Accepting U-type design
Criteria
Data processing
Design engineering
Exact sciences and technology
Experimental design
Flexible regions
General topics
Heuristic
Mathematical analysis
Mathematics
Multivariate analysis
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in probability and statistics
Optimization
Probability and statistics
Sciences and techniques of general use
Statistics
Threshold Accepting
title Optimized U -type designs on flexible regions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A29%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_repec&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20U%20-type%20designs%20on%20flexible%20regions&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Lin,%20D.K.J.&rft.date=2010-06-01&rft.volume=54&rft.issue=6&rft.spage=1505&rft.epage=1515&rft.pages=1505-1515&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2010.01.032&rft_dat=%3Cproquest_repec%3E753736753%3C/proquest_repec%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753736753&rft_id=info:pmid/&rft_els_id=S0167947310000472&rfr_iscdi=true