Loading Rate Effect on Nanohardness of Soda-Lime-Silica Glass
To understand how hardness, the key design parameter for applications of brittle solids such as glass concerning contact deformation, is affected by loading rate variation, nanoindentation with a Berkovich tip was used to measure the nanohardness of a 330- μ m-thick soda-lime-silica glass as a funct...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2010-05, Vol.41 (5), p.1301-1312 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1312 |
---|---|
container_issue | 5 |
container_start_page | 1301 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 41 |
creator | Chakraborty, Riya Dey, Arjun Mukhopadhyay, Anoop Kumar |
description | To understand how hardness, the key design parameter for applications of brittle solids such as glass concerning contact deformation, is affected by loading rate variation, nanoindentation with a Berkovich tip was used to measure the nanohardness of a 330-
μ
m-thick soda-lime-silica glass as a function of loading rate (1 to 1000 mN·s
−1
). The results showed for the very first time that, with variations in the loading rate, there was a 6 to 9 pct increase in the nanohardness of glass up to a threshold loading rate (TLR), whereafter it did not appreciably increase with further increase in loading rate. Further, the nanohardness data showed an indentation size effect (ISE) that obeyed the Meyer’s law. These observations were explained in terms of a strong shear stress component developed just beneath the nanoindenter and the related shear-induced deformation processes at local microstructural scale weak links. The significant or insignificant presence of shear-induced serrations in load depth plots and corresponding scanning electron microscopic evidence of a strong or mild presence of shear deformation bands in and around the nanoindentation cavity supported such a rationalization. Finally, a qualitative picture was developed for different deformation processes induced at various loading rates in glass. |
doi_str_mv | 10.1007/s11661-010-0176-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753735817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2060052641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-9c680246fcd131e941d4c8053e9a818dd44848dee3e14974a0a5510b9e530f633</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLcgiKfVmezfHDxIqVUoClbPy7rZ1JQ0W3fTg9_elBQFwcMwA_N7j8cj5BzhGgHUTUKUEikg9KMk1QdkhIIzigWHw_4GxaiQOTsmJymtAAALJkfkdh5sWbfL7MV2PptWlXddFtrsybbhw8ay9SllocoWobR0Xq89XdRN7Ww2a2xKp-Sosk3yZ_s9Jm_309fJA50_zx4nd3PqOGcdLZzUkHNZuRIZ-oJjyZ0GwXxhNeqy5FxzXXrPPPJCcQtWCIT3wgsGlWRsTK4G300Mn1ufOrOuk_NNY1sftskowRQTGlVPXvwhV2Eb2z6cEQBaFbkWPYQD5GJIKfrKbGK9tvHLIJhdnWao0_R1ml2dRveay72xTc42VbStq9OPMM-lEoLvuHzgUv9qlz7-Bvjf_Bv3XIFS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>500879285</pqid></control><display><type>article</type><title>Loading Rate Effect on Nanohardness of Soda-Lime-Silica Glass</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chakraborty, Riya ; Dey, Arjun ; Mukhopadhyay, Anoop Kumar</creator><creatorcontrib>Chakraborty, Riya ; Dey, Arjun ; Mukhopadhyay, Anoop Kumar</creatorcontrib><description>To understand how hardness, the key design parameter for applications of brittle solids such as glass concerning contact deformation, is affected by loading rate variation, nanoindentation with a Berkovich tip was used to measure the nanohardness of a 330-
μ
m-thick soda-lime-silica glass as a function of loading rate (1 to 1000 mN·s
−1
). The results showed for the very first time that, with variations in the loading rate, there was a 6 to 9 pct increase in the nanohardness of glass up to a threshold loading rate (TLR), whereafter it did not appreciably increase with further increase in loading rate. Further, the nanohardness data showed an indentation size effect (ISE) that obeyed the Meyer’s law. These observations were explained in terms of a strong shear stress component developed just beneath the nanoindenter and the related shear-induced deformation processes at local microstructural scale weak links. The significant or insignificant presence of shear-induced serrations in load depth plots and corresponding scanning electron microscopic evidence of a strong or mild presence of shear deformation bands in and around the nanoindentation cavity supported such a rationalization. Finally, a qualitative picture was developed for different deformation processes induced at various loading rates in glass.</description><identifier>ISSN: 1073-5623</identifier><identifier>ISSN: 1543-1940</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-010-0176-8</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Deformation ; Exact sciences and technology ; Glass ; Load ; Loading rate ; Materials Science ; Metallic Materials ; Metallurgy ; Metals. Metallurgy ; Nanohardness ; Nanoindentation ; Nanostructure ; Nanotechnology ; Physical metallurgy ; R&D ; Research & development ; Scanning electron microscopy ; Structural Materials ; Studies ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2010-05, Vol.41 (5), p.1301-1312</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2010</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Minerals, Metals & Materials Society May 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-9c680246fcd131e941d4c8053e9a818dd44848dee3e14974a0a5510b9e530f633</citedby><cites>FETCH-LOGICAL-c443t-9c680246fcd131e941d4c8053e9a818dd44848dee3e14974a0a5510b9e530f633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-010-0176-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-010-0176-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22675548$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chakraborty, Riya</creatorcontrib><creatorcontrib>Dey, Arjun</creatorcontrib><creatorcontrib>Mukhopadhyay, Anoop Kumar</creatorcontrib><title>Loading Rate Effect on Nanohardness of Soda-Lime-Silica Glass</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>To understand how hardness, the key design parameter for applications of brittle solids such as glass concerning contact deformation, is affected by loading rate variation, nanoindentation with a Berkovich tip was used to measure the nanohardness of a 330-
μ
m-thick soda-lime-silica glass as a function of loading rate (1 to 1000 mN·s
−1
). The results showed for the very first time that, with variations in the loading rate, there was a 6 to 9 pct increase in the nanohardness of glass up to a threshold loading rate (TLR), whereafter it did not appreciably increase with further increase in loading rate. Further, the nanohardness data showed an indentation size effect (ISE) that obeyed the Meyer’s law. These observations were explained in terms of a strong shear stress component developed just beneath the nanoindenter and the related shear-induced deformation processes at local microstructural scale weak links. The significant or insignificant presence of shear-induced serrations in load depth plots and corresponding scanning electron microscopic evidence of a strong or mild presence of shear deformation bands in and around the nanoindentation cavity supported such a rationalization. Finally, a qualitative picture was developed for different deformation processes induced at various loading rates in glass.</description><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Deformation</subject><subject>Exact sciences and technology</subject><subject>Glass</subject><subject>Load</subject><subject>Loading rate</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Metals. Metallurgy</subject><subject>Nanohardness</subject><subject>Nanoindentation</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Physical metallurgy</subject><subject>R&D</subject><subject>Research & development</subject><subject>Scanning electron microscopy</subject><subject>Structural Materials</subject><subject>Studies</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9Lw0AQxRdRsFY_gLcgiKfVmezfHDxIqVUoClbPy7rZ1JQ0W3fTg9_elBQFwcMwA_N7j8cj5BzhGgHUTUKUEikg9KMk1QdkhIIzigWHw_4GxaiQOTsmJymtAAALJkfkdh5sWbfL7MV2PptWlXddFtrsybbhw8ay9SllocoWobR0Xq89XdRN7Ww2a2xKp-Sosk3yZ_s9Jm_309fJA50_zx4nd3PqOGcdLZzUkHNZuRIZ-oJjyZ0GwXxhNeqy5FxzXXrPPPJCcQtWCIT3wgsGlWRsTK4G300Mn1ufOrOuk_NNY1sftskowRQTGlVPXvwhV2Eb2z6cEQBaFbkWPYQD5GJIKfrKbGK9tvHLIJhdnWao0_R1ml2dRveay72xTc42VbStq9OPMM-lEoLvuHzgUv9qlz7-Bvjf_Bv3XIFS</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Chakraborty, Riya</creator><creator>Dey, Arjun</creator><creator>Mukhopadhyay, Anoop Kumar</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20100501</creationdate><title>Loading Rate Effect on Nanohardness of Soda-Lime-Silica Glass</title><author>Chakraborty, Riya ; Dey, Arjun ; Mukhopadhyay, Anoop Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-9c680246fcd131e941d4c8053e9a818dd44848dee3e14974a0a5510b9e530f633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Deformation</topic><topic>Exact sciences and technology</topic><topic>Glass</topic><topic>Load</topic><topic>Loading rate</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Metals. Metallurgy</topic><topic>Nanohardness</topic><topic>Nanoindentation</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Physical metallurgy</topic><topic>R&D</topic><topic>Research & development</topic><topic>Scanning electron microscopy</topic><topic>Structural Materials</topic><topic>Studies</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, Riya</creatorcontrib><creatorcontrib>Dey, Arjun</creatorcontrib><creatorcontrib>Mukhopadhyay, Anoop Kumar</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborty, Riya</au><au>Dey, Arjun</au><au>Mukhopadhyay, Anoop Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loading Rate Effect on Nanohardness of Soda-Lime-Silica Glass</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2010-05-01</date><risdate>2010</risdate><volume>41</volume><issue>5</issue><spage>1301</spage><epage>1312</epage><pages>1301-1312</pages><issn>1073-5623</issn><issn>1543-1940</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>To understand how hardness, the key design parameter for applications of brittle solids such as glass concerning contact deformation, is affected by loading rate variation, nanoindentation with a Berkovich tip was used to measure the nanohardness of a 330-
μ
m-thick soda-lime-silica glass as a function of loading rate (1 to 1000 mN·s
−1
). The results showed for the very first time that, with variations in the loading rate, there was a 6 to 9 pct increase in the nanohardness of glass up to a threshold loading rate (TLR), whereafter it did not appreciably increase with further increase in loading rate. Further, the nanohardness data showed an indentation size effect (ISE) that obeyed the Meyer’s law. These observations were explained in terms of a strong shear stress component developed just beneath the nanoindenter and the related shear-induced deformation processes at local microstructural scale weak links. The significant or insignificant presence of shear-induced serrations in load depth plots and corresponding scanning electron microscopic evidence of a strong or mild presence of shear deformation bands in and around the nanoindentation cavity supported such a rationalization. Finally, a qualitative picture was developed for different deformation processes induced at various loading rates in glass.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-010-0176-8</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2010-05, Vol.41 (5), p.1301-1312 |
issn | 1073-5623 1543-1940 1543-1940 |
language | eng |
recordid | cdi_proquest_miscellaneous_753735817 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied sciences Characterization and Evaluation of Materials Chemistry and Materials Science Deformation Exact sciences and technology Glass Load Loading rate Materials Science Metallic Materials Metallurgy Metals. Metallurgy Nanohardness Nanoindentation Nanostructure Nanotechnology Physical metallurgy R&D Research & development Scanning electron microscopy Structural Materials Studies Surfaces and Interfaces Thin Films |
title | Loading Rate Effect on Nanohardness of Soda-Lime-Silica Glass |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loading%20Rate%20Effect%20on%20Nanohardness%20of%20Soda-Lime-Silica%20Glass&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Chakraborty,%20Riya&rft.date=2010-05-01&rft.volume=41&rft.issue=5&rft.spage=1301&rft.epage=1312&rft.pages=1301-1312&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-010-0176-8&rft_dat=%3Cproquest_cross%3E2060052641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=500879285&rft_id=info:pmid/&rfr_iscdi=true |