Localized rotation of principal stress around faults and fractures determined from borehole breakouts in hole B of the Taiwan Chelungpu-fault Drilling Project (TCDP)

To reveal details of stress perturbations associated with faults and fractures, we investigated the faults and large fractures accompanied by stress-induced borehole breakouts or drilling-induced tensile fractures in hole B of the Taiwan Chelungpu-fault Drilling Project (TCDP). Then, we determined t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tectonophysics 2010-02, Vol.482 (1), p.82-91
Hauptverfasser: Lin, Weiren, Yeh, En-Chao, Hung, Jih-Hao, Haimson, Bezalel, Hirono, Tetsuro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To reveal details of stress perturbations associated with faults and fractures, we investigated the faults and large fractures accompanied by stress-induced borehole breakouts or drilling-induced tensile fractures in hole B of the Taiwan Chelungpu-fault Drilling Project (TCDP). Then, we determined the relationship between the faults and fractures and stress orientation changes. We identified faults and fractures from electrical images of the borehole wall obtained by downhole logging but also from photographs and descriptions of retrieved core samples, and measured the variations in the principal horizontal stress orientation ascertained from borehole breakouts observed on the electrical images in the vicinity of the faults and fractures. Identification of geological structures (faults, fractures, and lithologic boundaries) by electrical images only is difficult and may sometimes yield incorrect results. In a novel approach, therefore, we used both the electrical images and core photographs to identify geological structures. We found four patterns of stress orientation change, or no change, in the vicinity of faults and fractures in TCDP hole B: (i) abrupt (discontinuous) rotation in the vicinity of faults or fractures; (ii) gradual rotation; (iii) suppression of breakouts at faults, fractures, or lithologic boundaries; and (iv) no change in the stress orientation. We recognized stress fluctuations, that is, heterogeneous mesoscale (≥ 10 cm) stress distributions with respect to both stress orientation and magnitude. In addition, we found that stress state changes occurred frequently in the vicinity of faults, fractures, and lithologic boundaries.
ISSN:0040-1951
1879-3266
DOI:10.1016/j.tecto.2009.06.020