A hybrid finite element-scaled boundary finite element method for crack propagation modelling
This study develops a novel hybrid method that combines the finite element method (FEM) and the scaled boundary finite element method (SBFEM) for crack propagation modelling in brittle and quasi-brittle materials. A very simple yet flexible local remeshing procedure, solely based on the FE mesh, is...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2010-03, Vol.199 (17), p.1178-1192 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1192 |
---|---|
container_issue | 17 |
container_start_page | 1178 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 199 |
creator | Ooi, E.T. Yang, Z.J. |
description | This study develops a novel hybrid method that combines the finite element method (FEM) and the scaled boundary finite element method (SBFEM) for crack propagation modelling in brittle and quasi-brittle materials. A very simple yet flexible local remeshing procedure, solely based on the FE mesh, is used to accommodate crack propagation. The crack-tip FE mesh is then replaced by a SBFEM rosette. This enables direct extraction of accurate stress intensity factors (SIFs) from the semi-analytical displacement or stress solutions of the SBFEM, which are then used to evaluate the crack propagation criterion. The fracture process zones are modelled using nonlinear cohesive interface elements that are automatically inserted into the FE mesh as the cracks propagate. Both the FEM’s flexibility in remeshing multiple cracks and the SBFEM’s high accuracy in calculating SIFs are exploited. The efficiency of the hybrid method in calculating SIFs is first demonstrated in two problems with stationary cracks. Nonlinear cohesive crack propagation in three notched concrete beams is then modelled. The results compare well with experimental and numerical results available in the literature. |
doi_str_mv | 10.1016/j.cma.2009.12.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753733377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782509004113</els_id><sourcerecordid>753733377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-64d8b3cdbdc80579706b37bdaa4e3b1e7abd6a62160620993839b653328cdf713</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9iyIKYEfzS2I6YK8SUhscCILH9cWpckLnaK1H-Pq1YMDNxyw73v3XsPQpcEVwQTfrOqbK8rinFTEVphXB-hCZGiKSlh8hhNMJ7VpZC0PkVnKa1wLknoBH3Mi-XWRO-K1g9-hAI66GEYy2R1B64wYTM4Hbd_xkUP4zJkU4iFjdp-FusY1nqhRx-Gog8Ous4Pi3N00uouwcWhT9H7w_3b3VP58vr4fDd_KS2rm7HkMycNs844K3EtGoG5YcI4rWfADAGhjeOaU8Ixp7hpmGSN4TVjVFrXCsKm6Hq_N6f42kAaVe-TzRn0AGGTlKiZYIwJkZVkr7QxpBShVevo-_ygIljtSKqVyiTVjqQiVGWS2XN12K53VNqoB-vTr5HSWnJKWdbd7nWQX_32EFWyHgYLzkewo3LB_3PlBygwiUI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753733377</pqid></control><display><type>article</type><title>A hybrid finite element-scaled boundary finite element method for crack propagation modelling</title><source>Elsevier ScienceDirect Journals</source><creator>Ooi, E.T. ; Yang, Z.J.</creator><creatorcontrib>Ooi, E.T. ; Yang, Z.J.</creatorcontrib><description>This study develops a novel hybrid method that combines the finite element method (FEM) and the scaled boundary finite element method (SBFEM) for crack propagation modelling in brittle and quasi-brittle materials. A very simple yet flexible local remeshing procedure, solely based on the FE mesh, is used to accommodate crack propagation. The crack-tip FE mesh is then replaced by a SBFEM rosette. This enables direct extraction of accurate stress intensity factors (SIFs) from the semi-analytical displacement or stress solutions of the SBFEM, which are then used to evaluate the crack propagation criterion. The fracture process zones are modelled using nonlinear cohesive interface elements that are automatically inserted into the FE mesh as the cracks propagate. Both the FEM’s flexibility in remeshing multiple cracks and the SBFEM’s high accuracy in calculating SIFs are exploited. The efficiency of the hybrid method in calculating SIFs is first demonstrated in two problems with stationary cracks. Nonlinear cohesive crack propagation in three notched concrete beams is then modelled. The results compare well with experimental and numerical results available in the literature.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2009.12.005</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Applied sciences ; Boundary element method ; Building structure ; Buildings. Public works ; Computational techniques ; Concrete structure ; Construction (buildings and works) ; Crack propagation ; Discrete crack model ; Exact sciences and technology ; Finite element method ; Finite-element and galerkin methods ; Fracture mechanics ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Modelling ; Multiple cohesive crack propagation ; Nonlinearity ; Physics ; Remeshing ; Scaled boundary finite element method ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>Computer methods in applied mechanics and engineering, 2010-03, Vol.199 (17), p.1178-1192</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-64d8b3cdbdc80579706b37bdaa4e3b1e7abd6a62160620993839b653328cdf713</citedby><cites>FETCH-LOGICAL-c359t-64d8b3cdbdc80579706b37bdaa4e3b1e7abd6a62160620993839b653328cdf713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2009.12.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22586223$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ooi, E.T.</creatorcontrib><creatorcontrib>Yang, Z.J.</creatorcontrib><title>A hybrid finite element-scaled boundary finite element method for crack propagation modelling</title><title>Computer methods in applied mechanics and engineering</title><description>This study develops a novel hybrid method that combines the finite element method (FEM) and the scaled boundary finite element method (SBFEM) for crack propagation modelling in brittle and quasi-brittle materials. A very simple yet flexible local remeshing procedure, solely based on the FE mesh, is used to accommodate crack propagation. The crack-tip FE mesh is then replaced by a SBFEM rosette. This enables direct extraction of accurate stress intensity factors (SIFs) from the semi-analytical displacement or stress solutions of the SBFEM, which are then used to evaluate the crack propagation criterion. The fracture process zones are modelled using nonlinear cohesive interface elements that are automatically inserted into the FE mesh as the cracks propagate. Both the FEM’s flexibility in remeshing multiple cracks and the SBFEM’s high accuracy in calculating SIFs are exploited. The efficiency of the hybrid method in calculating SIFs is first demonstrated in two problems with stationary cracks. Nonlinear cohesive crack propagation in three notched concrete beams is then modelled. The results compare well with experimental and numerical results available in the literature.</description><subject>Applied sciences</subject><subject>Boundary element method</subject><subject>Building structure</subject><subject>Buildings. Public works</subject><subject>Computational techniques</subject><subject>Concrete structure</subject><subject>Construction (buildings and works)</subject><subject>Crack propagation</subject><subject>Discrete crack model</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Finite-element and galerkin methods</subject><subject>Fracture mechanics</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Multiple cohesive crack propagation</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Remeshing</subject><subject>Scaled boundary finite element method</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9iyIKYEfzS2I6YK8SUhscCILH9cWpckLnaK1H-Pq1YMDNxyw73v3XsPQpcEVwQTfrOqbK8rinFTEVphXB-hCZGiKSlh8hhNMJ7VpZC0PkVnKa1wLknoBH3Mi-XWRO-K1g9-hAI66GEYy2R1B64wYTM4Hbd_xkUP4zJkU4iFjdp-FusY1nqhRx-Gog8Ous4Pi3N00uouwcWhT9H7w_3b3VP58vr4fDd_KS2rm7HkMycNs844K3EtGoG5YcI4rWfADAGhjeOaU8Ixp7hpmGSN4TVjVFrXCsKm6Hq_N6f42kAaVe-TzRn0AGGTlKiZYIwJkZVkr7QxpBShVevo-_ygIljtSKqVyiTVjqQiVGWS2XN12K53VNqoB-vTr5HSWnJKWdbd7nWQX_32EFWyHgYLzkewo3LB_3PlBygwiUI</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Ooi, E.T.</creator><creator>Yang, Z.J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100301</creationdate><title>A hybrid finite element-scaled boundary finite element method for crack propagation modelling</title><author>Ooi, E.T. ; Yang, Z.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-64d8b3cdbdc80579706b37bdaa4e3b1e7abd6a62160620993839b653328cdf713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Boundary element method</topic><topic>Building structure</topic><topic>Buildings. Public works</topic><topic>Computational techniques</topic><topic>Concrete structure</topic><topic>Construction (buildings and works)</topic><topic>Crack propagation</topic><topic>Discrete crack model</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Finite-element and galerkin methods</topic><topic>Fracture mechanics</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Multiple cohesive crack propagation</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Remeshing</topic><topic>Scaled boundary finite element method</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ooi, E.T.</creatorcontrib><creatorcontrib>Yang, Z.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ooi, E.T.</au><au>Yang, Z.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid finite element-scaled boundary finite element method for crack propagation modelling</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>199</volume><issue>17</issue><spage>1178</spage><epage>1192</epage><pages>1178-1192</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>This study develops a novel hybrid method that combines the finite element method (FEM) and the scaled boundary finite element method (SBFEM) for crack propagation modelling in brittle and quasi-brittle materials. A very simple yet flexible local remeshing procedure, solely based on the FE mesh, is used to accommodate crack propagation. The crack-tip FE mesh is then replaced by a SBFEM rosette. This enables direct extraction of accurate stress intensity factors (SIFs) from the semi-analytical displacement or stress solutions of the SBFEM, which are then used to evaluate the crack propagation criterion. The fracture process zones are modelled using nonlinear cohesive interface elements that are automatically inserted into the FE mesh as the cracks propagate. Both the FEM’s flexibility in remeshing multiple cracks and the SBFEM’s high accuracy in calculating SIFs are exploited. The efficiency of the hybrid method in calculating SIFs is first demonstrated in two problems with stationary cracks. Nonlinear cohesive crack propagation in three notched concrete beams is then modelled. The results compare well with experimental and numerical results available in the literature.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2009.12.005</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2010-03, Vol.199 (17), p.1178-1192 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_miscellaneous_753733377 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Boundary element method Building structure Buildings. Public works Computational techniques Concrete structure Construction (buildings and works) Crack propagation Discrete crack model Exact sciences and technology Finite element method Finite-element and galerkin methods Fracture mechanics Fracture mechanics (crack, fatigue, damage...) Fundamental areas of phenomenology (including applications) Mathematical analysis Mathematical methods in physics Mathematical models Modelling Multiple cohesive crack propagation Nonlinearity Physics Remeshing Scaled boundary finite element method Solid mechanics Structural and continuum mechanics |
title | A hybrid finite element-scaled boundary finite element method for crack propagation modelling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A25%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20finite%20element-scaled%20boundary%20finite%20element%20method%20for%20crack%20propagation%20modelling&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Ooi,%20E.T.&rft.date=2010-03-01&rft.volume=199&rft.issue=17&rft.spage=1178&rft.epage=1192&rft.pages=1178-1192&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/j.cma.2009.12.005&rft_dat=%3Cproquest_cross%3E753733377%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753733377&rft_id=info:pmid/&rft_els_id=S0045782509004113&rfr_iscdi=true |