A hybrid finite element-scaled boundary finite element method for crack propagation modelling

This study develops a novel hybrid method that combines the finite element method (FEM) and the scaled boundary finite element method (SBFEM) for crack propagation modelling in brittle and quasi-brittle materials. A very simple yet flexible local remeshing procedure, solely based on the FE mesh, is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2010-03, Vol.199 (17), p.1178-1192
Hauptverfasser: Ooi, E.T., Yang, Z.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1192
container_issue 17
container_start_page 1178
container_title Computer methods in applied mechanics and engineering
container_volume 199
creator Ooi, E.T.
Yang, Z.J.
description This study develops a novel hybrid method that combines the finite element method (FEM) and the scaled boundary finite element method (SBFEM) for crack propagation modelling in brittle and quasi-brittle materials. A very simple yet flexible local remeshing procedure, solely based on the FE mesh, is used to accommodate crack propagation. The crack-tip FE mesh is then replaced by a SBFEM rosette. This enables direct extraction of accurate stress intensity factors (SIFs) from the semi-analytical displacement or stress solutions of the SBFEM, which are then used to evaluate the crack propagation criterion. The fracture process zones are modelled using nonlinear cohesive interface elements that are automatically inserted into the FE mesh as the cracks propagate. Both the FEM’s flexibility in remeshing multiple cracks and the SBFEM’s high accuracy in calculating SIFs are exploited. The efficiency of the hybrid method in calculating SIFs is first demonstrated in two problems with stationary cracks. Nonlinear cohesive crack propagation in three notched concrete beams is then modelled. The results compare well with experimental and numerical results available in the literature.
doi_str_mv 10.1016/j.cma.2009.12.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753733377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782509004113</els_id><sourcerecordid>753733377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-64d8b3cdbdc80579706b37bdaa4e3b1e7abd6a62160620993839b653328cdf713</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9iyIKYEfzS2I6YK8SUhscCILH9cWpckLnaK1H-Pq1YMDNxyw73v3XsPQpcEVwQTfrOqbK8rinFTEVphXB-hCZGiKSlh8hhNMJ7VpZC0PkVnKa1wLknoBH3Mi-XWRO-K1g9-hAI66GEYy2R1B64wYTM4Hbd_xkUP4zJkU4iFjdp-FusY1nqhRx-Gog8Ous4Pi3N00uouwcWhT9H7w_3b3VP58vr4fDd_KS2rm7HkMycNs844K3EtGoG5YcI4rWfADAGhjeOaU8Ixp7hpmGSN4TVjVFrXCsKm6Hq_N6f42kAaVe-TzRn0AGGTlKiZYIwJkZVkr7QxpBShVevo-_ygIljtSKqVyiTVjqQiVGWS2XN12K53VNqoB-vTr5HSWnJKWdbd7nWQX_32EFWyHgYLzkewo3LB_3PlBygwiUI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753733377</pqid></control><display><type>article</type><title>A hybrid finite element-scaled boundary finite element method for crack propagation modelling</title><source>Elsevier ScienceDirect Journals</source><creator>Ooi, E.T. ; Yang, Z.J.</creator><creatorcontrib>Ooi, E.T. ; Yang, Z.J.</creatorcontrib><description>This study develops a novel hybrid method that combines the finite element method (FEM) and the scaled boundary finite element method (SBFEM) for crack propagation modelling in brittle and quasi-brittle materials. A very simple yet flexible local remeshing procedure, solely based on the FE mesh, is used to accommodate crack propagation. The crack-tip FE mesh is then replaced by a SBFEM rosette. This enables direct extraction of accurate stress intensity factors (SIFs) from the semi-analytical displacement or stress solutions of the SBFEM, which are then used to evaluate the crack propagation criterion. The fracture process zones are modelled using nonlinear cohesive interface elements that are automatically inserted into the FE mesh as the cracks propagate. Both the FEM’s flexibility in remeshing multiple cracks and the SBFEM’s high accuracy in calculating SIFs are exploited. The efficiency of the hybrid method in calculating SIFs is first demonstrated in two problems with stationary cracks. Nonlinear cohesive crack propagation in three notched concrete beams is then modelled. The results compare well with experimental and numerical results available in the literature.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2009.12.005</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Applied sciences ; Boundary element method ; Building structure ; Buildings. Public works ; Computational techniques ; Concrete structure ; Construction (buildings and works) ; Crack propagation ; Discrete crack model ; Exact sciences and technology ; Finite element method ; Finite-element and galerkin methods ; Fracture mechanics ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Modelling ; Multiple cohesive crack propagation ; Nonlinearity ; Physics ; Remeshing ; Scaled boundary finite element method ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>Computer methods in applied mechanics and engineering, 2010-03, Vol.199 (17), p.1178-1192</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-64d8b3cdbdc80579706b37bdaa4e3b1e7abd6a62160620993839b653328cdf713</citedby><cites>FETCH-LOGICAL-c359t-64d8b3cdbdc80579706b37bdaa4e3b1e7abd6a62160620993839b653328cdf713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2009.12.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22586223$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ooi, E.T.</creatorcontrib><creatorcontrib>Yang, Z.J.</creatorcontrib><title>A hybrid finite element-scaled boundary finite element method for crack propagation modelling</title><title>Computer methods in applied mechanics and engineering</title><description>This study develops a novel hybrid method that combines the finite element method (FEM) and the scaled boundary finite element method (SBFEM) for crack propagation modelling in brittle and quasi-brittle materials. A very simple yet flexible local remeshing procedure, solely based on the FE mesh, is used to accommodate crack propagation. The crack-tip FE mesh is then replaced by a SBFEM rosette. This enables direct extraction of accurate stress intensity factors (SIFs) from the semi-analytical displacement or stress solutions of the SBFEM, which are then used to evaluate the crack propagation criterion. The fracture process zones are modelled using nonlinear cohesive interface elements that are automatically inserted into the FE mesh as the cracks propagate. Both the FEM’s flexibility in remeshing multiple cracks and the SBFEM’s high accuracy in calculating SIFs are exploited. The efficiency of the hybrid method in calculating SIFs is first demonstrated in two problems with stationary cracks. Nonlinear cohesive crack propagation in three notched concrete beams is then modelled. The results compare well with experimental and numerical results available in the literature.</description><subject>Applied sciences</subject><subject>Boundary element method</subject><subject>Building structure</subject><subject>Buildings. Public works</subject><subject>Computational techniques</subject><subject>Concrete structure</subject><subject>Construction (buildings and works)</subject><subject>Crack propagation</subject><subject>Discrete crack model</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Finite-element and galerkin methods</subject><subject>Fracture mechanics</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Multiple cohesive crack propagation</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Remeshing</subject><subject>Scaled boundary finite element method</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9iyIKYEfzS2I6YK8SUhscCILH9cWpckLnaK1H-Pq1YMDNxyw73v3XsPQpcEVwQTfrOqbK8rinFTEVphXB-hCZGiKSlh8hhNMJ7VpZC0PkVnKa1wLknoBH3Mi-XWRO-K1g9-hAI66GEYy2R1B64wYTM4Hbd_xkUP4zJkU4iFjdp-FusY1nqhRx-Gog8Ous4Pi3N00uouwcWhT9H7w_3b3VP58vr4fDd_KS2rm7HkMycNs844K3EtGoG5YcI4rWfADAGhjeOaU8Ixp7hpmGSN4TVjVFrXCsKm6Hq_N6f42kAaVe-TzRn0AGGTlKiZYIwJkZVkr7QxpBShVevo-_ygIljtSKqVyiTVjqQiVGWS2XN12K53VNqoB-vTr5HSWnJKWdbd7nWQX_32EFWyHgYLzkewo3LB_3PlBygwiUI</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Ooi, E.T.</creator><creator>Yang, Z.J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100301</creationdate><title>A hybrid finite element-scaled boundary finite element method for crack propagation modelling</title><author>Ooi, E.T. ; Yang, Z.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-64d8b3cdbdc80579706b37bdaa4e3b1e7abd6a62160620993839b653328cdf713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Boundary element method</topic><topic>Building structure</topic><topic>Buildings. Public works</topic><topic>Computational techniques</topic><topic>Concrete structure</topic><topic>Construction (buildings and works)</topic><topic>Crack propagation</topic><topic>Discrete crack model</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Finite-element and galerkin methods</topic><topic>Fracture mechanics</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Multiple cohesive crack propagation</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Remeshing</topic><topic>Scaled boundary finite element method</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ooi, E.T.</creatorcontrib><creatorcontrib>Yang, Z.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ooi, E.T.</au><au>Yang, Z.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid finite element-scaled boundary finite element method for crack propagation modelling</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>199</volume><issue>17</issue><spage>1178</spage><epage>1192</epage><pages>1178-1192</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>This study develops a novel hybrid method that combines the finite element method (FEM) and the scaled boundary finite element method (SBFEM) for crack propagation modelling in brittle and quasi-brittle materials. A very simple yet flexible local remeshing procedure, solely based on the FE mesh, is used to accommodate crack propagation. The crack-tip FE mesh is then replaced by a SBFEM rosette. This enables direct extraction of accurate stress intensity factors (SIFs) from the semi-analytical displacement or stress solutions of the SBFEM, which are then used to evaluate the crack propagation criterion. The fracture process zones are modelled using nonlinear cohesive interface elements that are automatically inserted into the FE mesh as the cracks propagate. Both the FEM’s flexibility in remeshing multiple cracks and the SBFEM’s high accuracy in calculating SIFs are exploited. The efficiency of the hybrid method in calculating SIFs is first demonstrated in two problems with stationary cracks. Nonlinear cohesive crack propagation in three notched concrete beams is then modelled. The results compare well with experimental and numerical results available in the literature.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2009.12.005</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2010-03, Vol.199 (17), p.1178-1192
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_753733377
source Elsevier ScienceDirect Journals
subjects Applied sciences
Boundary element method
Building structure
Buildings. Public works
Computational techniques
Concrete structure
Construction (buildings and works)
Crack propagation
Discrete crack model
Exact sciences and technology
Finite element method
Finite-element and galerkin methods
Fracture mechanics
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Mathematical analysis
Mathematical methods in physics
Mathematical models
Modelling
Multiple cohesive crack propagation
Nonlinearity
Physics
Remeshing
Scaled boundary finite element method
Solid mechanics
Structural and continuum mechanics
title A hybrid finite element-scaled boundary finite element method for crack propagation modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A25%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20finite%20element-scaled%20boundary%20finite%20element%20method%20for%20crack%20propagation%20modelling&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Ooi,%20E.T.&rft.date=2010-03-01&rft.volume=199&rft.issue=17&rft.spage=1178&rft.epage=1192&rft.pages=1178-1192&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/j.cma.2009.12.005&rft_dat=%3Cproquest_cross%3E753733377%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753733377&rft_id=info:pmid/&rft_els_id=S0045782509004113&rfr_iscdi=true