Tutte polynomials and G-parking functions
In this paper, we give a new expression for the Tutte polynomial of a general connected graph G in terms of statistics of G-parking functions. In particular, given a G-parking function f, let cb G ( f ) be the number of critical-bridge vertices of f and denote w G ( f ) = | E ( G ) | − | V ( G ) | −...
Gespeichert in:
Veröffentlicht in: | Advances in applied mathematics 2010-03, Vol.44 (3), p.231-242 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we give a new expression for the Tutte polynomial of a general connected graph
G in terms of statistics of
G-parking functions. In particular, given a
G-parking function
f, let
cb
G
(
f
)
be the number of critical-bridge vertices of
f and denote
w
G
(
f
)
=
|
E
(
G
)
|
−
|
V
(
G
)
|
−
∑
v
∈
V
(
G
)
f
(
v
)
. We prove that
T
G
(
x
,
y
)
=
∑
f
∈
P
G
x
cb
G
(
f
)
y
w
G
(
f
)
, where
P
G
is the set of
G-parking functions. Our proof avoids any use of spanning trees and is independent of bijections between the set of
G-parking functions and the set of spanning trees. |
---|---|
ISSN: | 0196-8858 1090-2074 |
DOI: | 10.1016/j.aam.2009.07.001 |