Optimal control using derivative feedback for linear systems

Abstract This paper presents the solution of the linear optimal control problem using derivative feedback for continuous, time-invariant, linear systems. The state-derivative and output-derivative feedback controllers are investigated. In this work, the optimal feedback gain matrices are derived whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering Journal of systems and control engineering, 2010-03, Vol.224 (2), p.185-202
1. Verfasser: Abdelaziz, T H S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 202
container_issue 2
container_start_page 185
container_title Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering
container_volume 224
creator Abdelaziz, T H S
description Abstract This paper presents the solution of the linear optimal control problem using derivative feedback for continuous, time-invariant, linear systems. The state-derivative and output-derivative feedback controllers are investigated. In this work, the optimal feedback gain matrices are derived which minimize the non-standard quadratic performance index. An explicit expression of the optimal state-derivative feedback gain is derived. Additionally, a convergent algorithm to solve the output-derivative feedback gains is demonstrated. The problems are studied for non-singular and singular open-loop state matrices. The necessary conditions for the existence of optimal gains are established. Finally, simulation results are included to show the effectiveness of the proposed approach.
doi_str_mv 10.1243/09596518JSCE886
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753728713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1243_09596518JSCE886</sage_id><sourcerecordid>753728713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-34039b27dd767604e8faedb7ac4e339ec7bdbe5c6975a5e121625c7ccbb4c153</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsFbPXhc9eDF2N_sNXqTULwo92HvYbCYlNU3qblLof--GepBC5zBzeL_3GB5Ct5Q80ZSzCTHCSEH159d0prU8Q6OUcJqwuM7RaFCTQb5EVyGsSRxt1Ag9L7ZdtbE1dm3T-bbGfaiaFS7AVzvbVTvAJUCRW_eNy9bjumrAehz2oYNNuEYXpa0D3PzdMVq-zpbT92S-ePuYvswTx6ToEsYJM3mqikJJJQkHXdqYqazjwJgBp_IiB-GkUcIKoCmVqXDKuTznjgo2Rg-H2K1vf3oIXbapgoO6tg20fciUYCrVirJI3h2R67b3TfwtE4QYorQe4u5PQdQQYSjnXEZqcqCcb0PwUGZbH4vy-4ySbCg8Oyo8Oh4PjmBX8C_zBP4LKid_ZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>500907885</pqid></control><display><type>article</type><title>Optimal control using derivative feedback for linear systems</title><source>Access via SAGE</source><creator>Abdelaziz, T H S</creator><creatorcontrib>Abdelaziz, T H S</creatorcontrib><description>Abstract This paper presents the solution of the linear optimal control problem using derivative feedback for continuous, time-invariant, linear systems. The state-derivative and output-derivative feedback controllers are investigated. In this work, the optimal feedback gain matrices are derived which minimize the non-standard quadratic performance index. An explicit expression of the optimal state-derivative feedback gain is derived. Additionally, a convergent algorithm to solve the output-derivative feedback gains is demonstrated. The problems are studied for non-singular and singular open-loop state matrices. The necessary conditions for the existence of optimal gains are established. Finally, simulation results are included to show the effectiveness of the proposed approach.</description><identifier>ISSN: 0959-6518</identifier><identifier>EISSN: 2041-3041</identifier><identifier>DOI: 10.1243/09596518JSCE886</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Computer simulation ; Control systems ; Control theory ; Controllers ; Derivatives ; Design optimization ; Economic models ; Feedback ; Feedback control ; Feedback control systems ; Gain ; Linear systems ; Mathematical analysis ; Matrices (mathematics) ; Mechanical engineering ; Optimal control ; Optimization ; Performance indices ; Programmable logic controllers</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering, 2010-03, Vol.224 (2), p.185-202</ispartof><rights>2010 Institution of Mechanical Engineers</rights><rights>Copyright Professional Engineering Publishing Ltd 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-34039b27dd767604e8faedb7ac4e339ec7bdbe5c6975a5e121625c7ccbb4c153</citedby><cites>FETCH-LOGICAL-c365t-34039b27dd767604e8faedb7ac4e339ec7bdbe5c6975a5e121625c7ccbb4c153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1243/09596518JSCE886$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1243/09596518JSCE886$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Abdelaziz, T H S</creatorcontrib><title>Optimal control using derivative feedback for linear systems</title><title>Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering</title><description>Abstract This paper presents the solution of the linear optimal control problem using derivative feedback for continuous, time-invariant, linear systems. The state-derivative and output-derivative feedback controllers are investigated. In this work, the optimal feedback gain matrices are derived which minimize the non-standard quadratic performance index. An explicit expression of the optimal state-derivative feedback gain is derived. Additionally, a convergent algorithm to solve the output-derivative feedback gains is demonstrated. The problems are studied for non-singular and singular open-loop state matrices. The necessary conditions for the existence of optimal gains are established. Finally, simulation results are included to show the effectiveness of the proposed approach.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Derivatives</subject><subject>Design optimization</subject><subject>Economic models</subject><subject>Feedback</subject><subject>Feedback control</subject><subject>Feedback control systems</subject><subject>Gain</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>Mechanical engineering</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Performance indices</subject><subject>Programmable logic controllers</subject><issn>0959-6518</issn><issn>2041-3041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1Lw0AQxRdRsFbPXhc9eDF2N_sNXqTULwo92HvYbCYlNU3qblLof--GepBC5zBzeL_3GB5Ct5Q80ZSzCTHCSEH159d0prU8Q6OUcJqwuM7RaFCTQb5EVyGsSRxt1Ag9L7ZdtbE1dm3T-bbGfaiaFS7AVzvbVTvAJUCRW_eNy9bjumrAehz2oYNNuEYXpa0D3PzdMVq-zpbT92S-ePuYvswTx6ToEsYJM3mqikJJJQkHXdqYqazjwJgBp_IiB-GkUcIKoCmVqXDKuTznjgo2Rg-H2K1vf3oIXbapgoO6tg20fciUYCrVirJI3h2R67b3TfwtE4QYorQe4u5PQdQQYSjnXEZqcqCcb0PwUGZbH4vy-4ySbCg8Oyo8Oh4PjmBX8C_zBP4LKid_ZA</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Abdelaziz, T H S</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100301</creationdate><title>Optimal control using derivative feedback for linear systems</title><author>Abdelaziz, T H S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-34039b27dd767604e8faedb7ac4e339ec7bdbe5c6975a5e121625c7ccbb4c153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Derivatives</topic><topic>Design optimization</topic><topic>Economic models</topic><topic>Feedback</topic><topic>Feedback control</topic><topic>Feedback control systems</topic><topic>Gain</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>Mechanical engineering</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Performance indices</topic><topic>Programmable logic controllers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdelaziz, T H S</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdelaziz, T H S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal control using derivative feedback for linear systems</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>224</volume><issue>2</issue><spage>185</spage><epage>202</epage><pages>185-202</pages><issn>0959-6518</issn><eissn>2041-3041</eissn><abstract>Abstract This paper presents the solution of the linear optimal control problem using derivative feedback for continuous, time-invariant, linear systems. The state-derivative and output-derivative feedback controllers are investigated. In this work, the optimal feedback gain matrices are derived which minimize the non-standard quadratic performance index. An explicit expression of the optimal state-derivative feedback gain is derived. Additionally, a convergent algorithm to solve the output-derivative feedback gains is demonstrated. The problems are studied for non-singular and singular open-loop state matrices. The necessary conditions for the existence of optimal gains are established. Finally, simulation results are included to show the effectiveness of the proposed approach.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1243/09596518JSCE886</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0959-6518
ispartof Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering, 2010-03, Vol.224 (2), p.185-202
issn 0959-6518
2041-3041
language eng
recordid cdi_proquest_miscellaneous_753728713
source Access via SAGE
subjects Algorithms
Computer simulation
Control systems
Control theory
Controllers
Derivatives
Design optimization
Economic models
Feedback
Feedback control
Feedback control systems
Gain
Linear systems
Mathematical analysis
Matrices (mathematics)
Mechanical engineering
Optimal control
Optimization
Performance indices
Programmable logic controllers
title Optimal control using derivative feedback for linear systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T08%3A40%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20control%20using%20derivative%20feedback%20for%20linear%20systems&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20I,%20Journal%20of%20systems%20and%20control%20engineering&rft.au=Abdelaziz,%20T%20H%20S&rft.date=2010-03-01&rft.volume=224&rft.issue=2&rft.spage=185&rft.epage=202&rft.pages=185-202&rft.issn=0959-6518&rft.eissn=2041-3041&rft_id=info:doi/10.1243/09596518JSCE886&rft_dat=%3Cproquest_cross%3E753728713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=500907885&rft_id=info:pmid/&rft_sage_id=10.1243_09596518JSCE886&rfr_iscdi=true