Optimal control using derivative feedback for linear systems
Abstract This paper presents the solution of the linear optimal control problem using derivative feedback for continuous, time-invariant, linear systems. The state-derivative and output-derivative feedback controllers are investigated. In this work, the optimal feedback gain matrices are derived whi...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering Journal of systems and control engineering, 2010-03, Vol.224 (2), p.185-202 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 202 |
---|---|
container_issue | 2 |
container_start_page | 185 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering |
container_volume | 224 |
creator | Abdelaziz, T H S |
description | Abstract
This paper presents the solution of the linear optimal control problem using derivative feedback for continuous, time-invariant, linear systems. The state-derivative and output-derivative feedback controllers are investigated. In this work, the optimal feedback gain matrices are derived which minimize the non-standard quadratic performance index. An explicit expression of the optimal state-derivative feedback gain is derived. Additionally, a convergent algorithm to solve the output-derivative feedback gains is demonstrated. The problems are studied for non-singular and singular open-loop state matrices. The necessary conditions for the existence of optimal gains are established. Finally, simulation results are included to show the effectiveness of the proposed approach. |
doi_str_mv | 10.1243/09596518JSCE886 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753728713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1243_09596518JSCE886</sage_id><sourcerecordid>753728713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-34039b27dd767604e8faedb7ac4e339ec7bdbe5c6975a5e121625c7ccbb4c153</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsFbPXhc9eDF2N_sNXqTULwo92HvYbCYlNU3qblLof--GepBC5zBzeL_3GB5Ct5Q80ZSzCTHCSEH159d0prU8Q6OUcJqwuM7RaFCTQb5EVyGsSRxt1Ag9L7ZdtbE1dm3T-bbGfaiaFS7AVzvbVTvAJUCRW_eNy9bjumrAehz2oYNNuEYXpa0D3PzdMVq-zpbT92S-ePuYvswTx6ToEsYJM3mqikJJJQkHXdqYqazjwJgBp_IiB-GkUcIKoCmVqXDKuTznjgo2Rg-H2K1vf3oIXbapgoO6tg20fciUYCrVirJI3h2R67b3TfwtE4QYorQe4u5PQdQQYSjnXEZqcqCcb0PwUGZbH4vy-4ySbCg8Oyo8Oh4PjmBX8C_zBP4LKid_ZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>500907885</pqid></control><display><type>article</type><title>Optimal control using derivative feedback for linear systems</title><source>Access via SAGE</source><creator>Abdelaziz, T H S</creator><creatorcontrib>Abdelaziz, T H S</creatorcontrib><description>Abstract
This paper presents the solution of the linear optimal control problem using derivative feedback for continuous, time-invariant, linear systems. The state-derivative and output-derivative feedback controllers are investigated. In this work, the optimal feedback gain matrices are derived which minimize the non-standard quadratic performance index. An explicit expression of the optimal state-derivative feedback gain is derived. Additionally, a convergent algorithm to solve the output-derivative feedback gains is demonstrated. The problems are studied for non-singular and singular open-loop state matrices. The necessary conditions for the existence of optimal gains are established. Finally, simulation results are included to show the effectiveness of the proposed approach.</description><identifier>ISSN: 0959-6518</identifier><identifier>EISSN: 2041-3041</identifier><identifier>DOI: 10.1243/09596518JSCE886</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Computer simulation ; Control systems ; Control theory ; Controllers ; Derivatives ; Design optimization ; Economic models ; Feedback ; Feedback control ; Feedback control systems ; Gain ; Linear systems ; Mathematical analysis ; Matrices (mathematics) ; Mechanical engineering ; Optimal control ; Optimization ; Performance indices ; Programmable logic controllers</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering, 2010-03, Vol.224 (2), p.185-202</ispartof><rights>2010 Institution of Mechanical Engineers</rights><rights>Copyright Professional Engineering Publishing Ltd 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-34039b27dd767604e8faedb7ac4e339ec7bdbe5c6975a5e121625c7ccbb4c153</citedby><cites>FETCH-LOGICAL-c365t-34039b27dd767604e8faedb7ac4e339ec7bdbe5c6975a5e121625c7ccbb4c153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1243/09596518JSCE886$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1243/09596518JSCE886$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Abdelaziz, T H S</creatorcontrib><title>Optimal control using derivative feedback for linear systems</title><title>Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering</title><description>Abstract
This paper presents the solution of the linear optimal control problem using derivative feedback for continuous, time-invariant, linear systems. The state-derivative and output-derivative feedback controllers are investigated. In this work, the optimal feedback gain matrices are derived which minimize the non-standard quadratic performance index. An explicit expression of the optimal state-derivative feedback gain is derived. Additionally, a convergent algorithm to solve the output-derivative feedback gains is demonstrated. The problems are studied for non-singular and singular open-loop state matrices. The necessary conditions for the existence of optimal gains are established. Finally, simulation results are included to show the effectiveness of the proposed approach.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Derivatives</subject><subject>Design optimization</subject><subject>Economic models</subject><subject>Feedback</subject><subject>Feedback control</subject><subject>Feedback control systems</subject><subject>Gain</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>Mechanical engineering</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Performance indices</subject><subject>Programmable logic controllers</subject><issn>0959-6518</issn><issn>2041-3041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1Lw0AQxRdRsFbPXhc9eDF2N_sNXqTULwo92HvYbCYlNU3qblLof--GepBC5zBzeL_3GB5Ct5Q80ZSzCTHCSEH159d0prU8Q6OUcJqwuM7RaFCTQb5EVyGsSRxt1Ag9L7ZdtbE1dm3T-bbGfaiaFS7AVzvbVTvAJUCRW_eNy9bjumrAehz2oYNNuEYXpa0D3PzdMVq-zpbT92S-ePuYvswTx6ToEsYJM3mqikJJJQkHXdqYqazjwJgBp_IiB-GkUcIKoCmVqXDKuTznjgo2Rg-H2K1vf3oIXbapgoO6tg20fciUYCrVirJI3h2R67b3TfwtE4QYorQe4u5PQdQQYSjnXEZqcqCcb0PwUGZbH4vy-4ySbCg8Oyo8Oh4PjmBX8C_zBP4LKid_ZA</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Abdelaziz, T H S</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100301</creationdate><title>Optimal control using derivative feedback for linear systems</title><author>Abdelaziz, T H S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-34039b27dd767604e8faedb7ac4e339ec7bdbe5c6975a5e121625c7ccbb4c153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Derivatives</topic><topic>Design optimization</topic><topic>Economic models</topic><topic>Feedback</topic><topic>Feedback control</topic><topic>Feedback control systems</topic><topic>Gain</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>Mechanical engineering</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Performance indices</topic><topic>Programmable logic controllers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdelaziz, T H S</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdelaziz, T H S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal control using derivative feedback for linear systems</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>224</volume><issue>2</issue><spage>185</spage><epage>202</epage><pages>185-202</pages><issn>0959-6518</issn><eissn>2041-3041</eissn><abstract>Abstract
This paper presents the solution of the linear optimal control problem using derivative feedback for continuous, time-invariant, linear systems. The state-derivative and output-derivative feedback controllers are investigated. In this work, the optimal feedback gain matrices are derived which minimize the non-standard quadratic performance index. An explicit expression of the optimal state-derivative feedback gain is derived. Additionally, a convergent algorithm to solve the output-derivative feedback gains is demonstrated. The problems are studied for non-singular and singular open-loop state matrices. The necessary conditions for the existence of optimal gains are established. Finally, simulation results are included to show the effectiveness of the proposed approach.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1243/09596518JSCE886</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0959-6518 |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering, 2010-03, Vol.224 (2), p.185-202 |
issn | 0959-6518 2041-3041 |
language | eng |
recordid | cdi_proquest_miscellaneous_753728713 |
source | Access via SAGE |
subjects | Algorithms Computer simulation Control systems Control theory Controllers Derivatives Design optimization Economic models Feedback Feedback control Feedback control systems Gain Linear systems Mathematical analysis Matrices (mathematics) Mechanical engineering Optimal control Optimization Performance indices Programmable logic controllers |
title | Optimal control using derivative feedback for linear systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T08%3A40%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20control%20using%20derivative%20feedback%20for%20linear%20systems&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20I,%20Journal%20of%20systems%20and%20control%20engineering&rft.au=Abdelaziz,%20T%20H%20S&rft.date=2010-03-01&rft.volume=224&rft.issue=2&rft.spage=185&rft.epage=202&rft.pages=185-202&rft.issn=0959-6518&rft.eissn=2041-3041&rft_id=info:doi/10.1243/09596518JSCE886&rft_dat=%3Cproquest_cross%3E753728713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=500907885&rft_id=info:pmid/&rft_sage_id=10.1243_09596518JSCE886&rfr_iscdi=true |