Highly power-efficient quantum cascade lasers
Quantum cascade lasers 1 are promising mid-infrared semiconductor light sources for molecular detection in applications such as environmental sensing or medical diagnostics. For such applications, researchers have been striving to improve device performance 2 . Recently, improvements in wall plug ef...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2010-02, Vol.4 (2), p.95-98 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 98 |
---|---|
container_issue | 2 |
container_start_page | 95 |
container_title | Nature photonics |
container_volume | 4 |
creator | Liu, Peter Q. Hoffman, Anthony J. Escarra, Matthew D. Franz, Kale J. Khurgin, Jacob B. Dikmelik, Yamac Wang, Xiaojun Fan, Jen-Yu Gmachl, Claire F. |
description | Quantum cascade lasers
1
are promising mid-infrared semiconductor light sources for molecular detection in applications such as environmental sensing or medical diagnostics. For such applications, researchers have been striving to improve device performance
2
. Recently, improvements in wall plug efficiency have been pursued with a view to realizing compact, portable, power-efficient and high-power quantum cascade laser systems
3
,
4
. However, advances have largely been incremental, and the basic quantum design has remained unchanged for many years, with the wall plug efficiency yet to reach above 35%. A crucial factor in quantum cascade laser performance is the efficient transport of electrons into the laser active regions. We recently theoretically described this transport process as limited by the interface-roughness-induced detuning of resonant tunnelling
5
. Here, we report that an ‘ultrastrong coupling’ design strategy overcomes this limiting factor and leads to the experimental realization of quantum cascade lasers with 40–50% wall plug efficiency when operated in pulsed mode at temperatures of 160 K or lower.
A quantum cascade laser with a wall-plug efficiency of up to 50% is experimentally realized when operated at low temperatures and in pulsed mode. The high-efficiency performance is achieved by implementing an ultrastrong coupling between the injector and active regions. |
doi_str_mv | 10.1038/nphoton.2009.262 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753724664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2381965801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-d5c44e9d050893240cdf68d0bfa9d7fe2518fef476900b46b380509b9f8473513</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWD_uHhdBPG2dfO0mRylqhYIXPYdsNmm3bLNtsov035ulpYLgaQbmmXeGB6E7DFMMVDz57arrOz8lAHJKCnKGJrhkMmdC0vNTL_gluopxDcCpJGSC8nmzXLX7bNt925Bb5xrTWN9nu0H7fthkRkeja5u1OtoQb9CF0220t8d6jb5eXz5n83zx8fY-e17khjHo85qnamUNHNJ1wsDUrhA1VE7LunSWcCycdawsJEDFioqKhMpKOsFKyjG9Ro-H3G3odoONvdo00di21d52Q1QlpyVhRcESef-HXHdD8Ok5JUpKKU5YguAAmdDFGKxT29BsdNgrDGq0p4721GhPJXtp5eGYOwpoXdDeNPG0RwgnhZBjND5wMY380obf-_9m_wBy9YBj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>873331246</pqid></control><display><type>article</type><title>Highly power-efficient quantum cascade lasers</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Liu, Peter Q. ; Hoffman, Anthony J. ; Escarra, Matthew D. ; Franz, Kale J. ; Khurgin, Jacob B. ; Dikmelik, Yamac ; Wang, Xiaojun ; Fan, Jen-Yu ; Gmachl, Claire F.</creator><creatorcontrib>Liu, Peter Q. ; Hoffman, Anthony J. ; Escarra, Matthew D. ; Franz, Kale J. ; Khurgin, Jacob B. ; Dikmelik, Yamac ; Wang, Xiaojun ; Fan, Jen-Yu ; Gmachl, Claire F.</creatorcontrib><description>Quantum cascade lasers
1
are promising mid-infrared semiconductor light sources for molecular detection in applications such as environmental sensing or medical diagnostics. For such applications, researchers have been striving to improve device performance
2
. Recently, improvements in wall plug efficiency have been pursued with a view to realizing compact, portable, power-efficient and high-power quantum cascade laser systems
3
,
4
. However, advances have largely been incremental, and the basic quantum design has remained unchanged for many years, with the wall plug efficiency yet to reach above 35%. A crucial factor in quantum cascade laser performance is the efficient transport of electrons into the laser active regions. We recently theoretically described this transport process as limited by the interface-roughness-induced detuning of resonant tunnelling
5
. Here, we report that an ‘ultrastrong coupling’ design strategy overcomes this limiting factor and leads to the experimental realization of quantum cascade lasers with 40–50% wall plug efficiency when operated in pulsed mode at temperatures of 160 K or lower.
A quantum cascade laser with a wall-plug efficiency of up to 50% is experimentally realized when operated at low temperatures and in pulsed mode. The high-efficiency performance is achieved by implementing an ultrastrong coupling between the injector and active regions.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/nphoton.2009.262</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1020/1092 ; 639/766/930/1032 ; Applied and Technical Physics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Lasers ; letter ; Light sources ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Quantum cascade lasers ; Quantum Physics ; Semiconductor lasers; laser diodes ; Transport processes</subject><ispartof>Nature photonics, 2010-02, Vol.4 (2), p.95-98</ispartof><rights>Springer Nature Limited 2009</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Nature Publishing Group Feb 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-d5c44e9d050893240cdf68d0bfa9d7fe2518fef476900b46b380509b9f8473513</citedby><cites>FETCH-LOGICAL-c440t-d5c44e9d050893240cdf68d0bfa9d7fe2518fef476900b46b380509b9f8473513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphoton.2009.262$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphoton.2009.262$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22526896$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Peter Q.</creatorcontrib><creatorcontrib>Hoffman, Anthony J.</creatorcontrib><creatorcontrib>Escarra, Matthew D.</creatorcontrib><creatorcontrib>Franz, Kale J.</creatorcontrib><creatorcontrib>Khurgin, Jacob B.</creatorcontrib><creatorcontrib>Dikmelik, Yamac</creatorcontrib><creatorcontrib>Wang, Xiaojun</creatorcontrib><creatorcontrib>Fan, Jen-Yu</creatorcontrib><creatorcontrib>Gmachl, Claire F.</creatorcontrib><title>Highly power-efficient quantum cascade lasers</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>Quantum cascade lasers
1
are promising mid-infrared semiconductor light sources for molecular detection in applications such as environmental sensing or medical diagnostics. For such applications, researchers have been striving to improve device performance
2
. Recently, improvements in wall plug efficiency have been pursued with a view to realizing compact, portable, power-efficient and high-power quantum cascade laser systems
3
,
4
. However, advances have largely been incremental, and the basic quantum design has remained unchanged for many years, with the wall plug efficiency yet to reach above 35%. A crucial factor in quantum cascade laser performance is the efficient transport of electrons into the laser active regions. We recently theoretically described this transport process as limited by the interface-roughness-induced detuning of resonant tunnelling
5
. Here, we report that an ‘ultrastrong coupling’ design strategy overcomes this limiting factor and leads to the experimental realization of quantum cascade lasers with 40–50% wall plug efficiency when operated in pulsed mode at temperatures of 160 K or lower.
A quantum cascade laser with a wall-plug efficiency of up to 50% is experimentally realized when operated at low temperatures and in pulsed mode. The high-efficiency performance is achieved by implementing an ultrastrong coupling between the injector and active regions.</description><subject>639/624/1020/1092</subject><subject>639/766/930/1032</subject><subject>Applied and Technical Physics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Lasers</subject><subject>letter</subject><subject>Light sources</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum cascade lasers</subject><subject>Quantum Physics</subject><subject>Semiconductor lasers; laser diodes</subject><subject>Transport processes</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWD_uHhdBPG2dfO0mRylqhYIXPYdsNmm3bLNtsov035ulpYLgaQbmmXeGB6E7DFMMVDz57arrOz8lAHJKCnKGJrhkMmdC0vNTL_gluopxDcCpJGSC8nmzXLX7bNt925Bb5xrTWN9nu0H7fthkRkeja5u1OtoQb9CF0220t8d6jb5eXz5n83zx8fY-e17khjHo85qnamUNHNJ1wsDUrhA1VE7LunSWcCycdawsJEDFioqKhMpKOsFKyjG9Ro-H3G3odoONvdo00di21d52Q1QlpyVhRcESef-HXHdD8Ok5JUpKKU5YguAAmdDFGKxT29BsdNgrDGq0p4721GhPJXtp5eGYOwpoXdDeNPG0RwgnhZBjND5wMY380obf-_9m_wBy9YBj</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Liu, Peter Q.</creator><creator>Hoffman, Anthony J.</creator><creator>Escarra, Matthew D.</creator><creator>Franz, Kale J.</creator><creator>Khurgin, Jacob B.</creator><creator>Dikmelik, Yamac</creator><creator>Wang, Xiaojun</creator><creator>Fan, Jen-Yu</creator><creator>Gmachl, Claire F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20100201</creationdate><title>Highly power-efficient quantum cascade lasers</title><author>Liu, Peter Q. ; Hoffman, Anthony J. ; Escarra, Matthew D. ; Franz, Kale J. ; Khurgin, Jacob B. ; Dikmelik, Yamac ; Wang, Xiaojun ; Fan, Jen-Yu ; Gmachl, Claire F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-d5c44e9d050893240cdf68d0bfa9d7fe2518fef476900b46b380509b9f8473513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>639/624/1020/1092</topic><topic>639/766/930/1032</topic><topic>Applied and Technical Physics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Lasers</topic><topic>letter</topic><topic>Light sources</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum cascade lasers</topic><topic>Quantum Physics</topic><topic>Semiconductor lasers; laser diodes</topic><topic>Transport processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Peter Q.</creatorcontrib><creatorcontrib>Hoffman, Anthony J.</creatorcontrib><creatorcontrib>Escarra, Matthew D.</creatorcontrib><creatorcontrib>Franz, Kale J.</creatorcontrib><creatorcontrib>Khurgin, Jacob B.</creatorcontrib><creatorcontrib>Dikmelik, Yamac</creatorcontrib><creatorcontrib>Wang, Xiaojun</creatorcontrib><creatorcontrib>Fan, Jen-Yu</creatorcontrib><creatorcontrib>Gmachl, Claire F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Peter Q.</au><au>Hoffman, Anthony J.</au><au>Escarra, Matthew D.</au><au>Franz, Kale J.</au><au>Khurgin, Jacob B.</au><au>Dikmelik, Yamac</au><au>Wang, Xiaojun</au><au>Fan, Jen-Yu</au><au>Gmachl, Claire F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly power-efficient quantum cascade lasers</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2010-02-01</date><risdate>2010</risdate><volume>4</volume><issue>2</issue><spage>95</spage><epage>98</epage><pages>95-98</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Quantum cascade lasers
1
are promising mid-infrared semiconductor light sources for molecular detection in applications such as environmental sensing or medical diagnostics. For such applications, researchers have been striving to improve device performance
2
. Recently, improvements in wall plug efficiency have been pursued with a view to realizing compact, portable, power-efficient and high-power quantum cascade laser systems
3
,
4
. However, advances have largely been incremental, and the basic quantum design has remained unchanged for many years, with the wall plug efficiency yet to reach above 35%. A crucial factor in quantum cascade laser performance is the efficient transport of electrons into the laser active regions. We recently theoretically described this transport process as limited by the interface-roughness-induced detuning of resonant tunnelling
5
. Here, we report that an ‘ultrastrong coupling’ design strategy overcomes this limiting factor and leads to the experimental realization of quantum cascade lasers with 40–50% wall plug efficiency when operated in pulsed mode at temperatures of 160 K or lower.
A quantum cascade laser with a wall-plug efficiency of up to 50% is experimentally realized when operated at low temperatures and in pulsed mode. The high-efficiency performance is achieved by implementing an ultrastrong coupling between the injector and active regions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphoton.2009.262</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2010-02, Vol.4 (2), p.95-98 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_miscellaneous_753724664 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 639/624/1020/1092 639/766/930/1032 Applied and Technical Physics Exact sciences and technology Fundamental areas of phenomenology (including applications) Lasers letter Light sources Optics Photonics Physics Physics and Astronomy Quantum cascade lasers Quantum Physics Semiconductor lasers laser diodes Transport processes |
title | Highly power-efficient quantum cascade lasers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A40%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20power-efficient%20quantum%20cascade%20lasers&rft.jtitle=Nature%20photonics&rft.au=Liu,%20Peter%20Q.&rft.date=2010-02-01&rft.volume=4&rft.issue=2&rft.spage=95&rft.epage=98&rft.pages=95-98&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/nphoton.2009.262&rft_dat=%3Cproquest_cross%3E2381965801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=873331246&rft_id=info:pmid/&rfr_iscdi=true |