The SCOP-formalism: an Operational Approach to Quantum Mechanics

We present the SCOP-formalism, an operational approach to quantum mechanics. If a State-COntext-Property-System (SCOP) satisfies a specific set of 'quantum axioms', it fits in a quantum mechanical representation in Hilbert space. We present a model in which the maximal change of state of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reconsideration of Foundations-5 2009-06, Vol.1232, p.33-44
1. Verfasser: D'Hooghe, Bart
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44
container_issue
container_start_page 33
container_title Reconsideration of Foundations-5
container_volume 1232
creator D'Hooghe, Bart
description We present the SCOP-formalism, an operational approach to quantum mechanics. If a State-COntext-Property-System (SCOP) satisfies a specific set of 'quantum axioms', it fits in a quantum mechanical representation in Hilbert space. We present a model in which the maximal change of state of the system due to interaction with the measurement context is controlled by a parameter N. In the case N = 2 the system reduces to a model for the spin measurements on a quantum spin-1/2 particle. In the limit N arrow right infinity the system is classical. For the intermediate cases it is impossible to define an orthocomplementation on the set of properties. Another interesting feature is that the probability of a state transition also depends on the context which induces it This contrasts sharply with standard quantum mechanics for which Gleason's theorem states the uniqueness of the state transition probability and independent of measurement context We show that if a SCOP satisfies a Gleason-like condition, namely that all state transition probabilities are independent of which measurement context induces the change of state, then the lattice of properties is orthocomplemented.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_753722652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753722652</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_7537226523</originalsourceid><addsrcrecordid>eNqNy7sKwjAUgOGACtbLO2RzKoSk9VgnpSguUsUObuUQUhrJpTbN--vgAzj9y_dPyIKByDMGAGxKEsaKLOWZeM7JIoQXY7wA2CXkUHeKPsrqlrZ-sGh0sHuKjla9GnDU3qGhx74fPMqOjp7eI7oxWnpVskOnZViRWYsmqPWvS7I5n-rykn6fd1RhbKwOUhmDTvkYGsgFcL7NufhffgAWlD2u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753722652</pqid></control><display><type>article</type><title>The SCOP-formalism: an Operational Approach to Quantum Mechanics</title><source>AIP Journals Complete</source><creator>D'Hooghe, Bart</creator><contributor>Khrennikov, Andrei</contributor><creatorcontrib>D'Hooghe, Bart ; Khrennikov, Andrei</creatorcontrib><description>We present the SCOP-formalism, an operational approach to quantum mechanics. If a State-COntext-Property-System (SCOP) satisfies a specific set of 'quantum axioms', it fits in a quantum mechanical representation in Hilbert space. We present a model in which the maximal change of state of the system due to interaction with the measurement context is controlled by a parameter N. In the case N = 2 the system reduces to a model for the spin measurements on a quantum spin-1/2 particle. In the limit N arrow right infinity the system is classical. For the intermediate cases it is impossible to define an orthocomplementation on the set of properties. Another interesting feature is that the probability of a state transition also depends on the context which induces it This contrasts sharply with standard quantum mechanics for which Gleason's theorem states the uniqueness of the state transition probability and independent of measurement context We show that if a SCOP satisfies a Gleason-like condition, namely that all state transition probabilities are independent of which measurement context induces the change of state, then the lattice of properties is orthocomplemented.</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 0735407770</identifier><identifier>ISBN: 9780735407770</identifier><language>eng</language><subject>Axioms ; Hilbert space ; Lattices ; Mathematical models ; Particle spin ; Quantum mechanics ; Representations ; Theorems ; Transition probabilities ; Uniqueness</subject><ispartof>Reconsideration of Foundations-5, 2009-06, Vol.1232, p.33-44</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><contributor>Khrennikov, Andrei</contributor><creatorcontrib>D'Hooghe, Bart</creatorcontrib><title>The SCOP-formalism: an Operational Approach to Quantum Mechanics</title><title>Reconsideration of Foundations-5</title><description>We present the SCOP-formalism, an operational approach to quantum mechanics. If a State-COntext-Property-System (SCOP) satisfies a specific set of 'quantum axioms', it fits in a quantum mechanical representation in Hilbert space. We present a model in which the maximal change of state of the system due to interaction with the measurement context is controlled by a parameter N. In the case N = 2 the system reduces to a model for the spin measurements on a quantum spin-1/2 particle. In the limit N arrow right infinity the system is classical. For the intermediate cases it is impossible to define an orthocomplementation on the set of properties. Another interesting feature is that the probability of a state transition also depends on the context which induces it This contrasts sharply with standard quantum mechanics for which Gleason's theorem states the uniqueness of the state transition probability and independent of measurement context We show that if a SCOP satisfies a Gleason-like condition, namely that all state transition probabilities are independent of which measurement context induces the change of state, then the lattice of properties is orthocomplemented.</description><subject>Axioms</subject><subject>Hilbert space</subject><subject>Lattices</subject><subject>Mathematical models</subject><subject>Particle spin</subject><subject>Quantum mechanics</subject><subject>Representations</subject><subject>Theorems</subject><subject>Transition probabilities</subject><subject>Uniqueness</subject><issn>0094-243X</issn><isbn>0735407770</isbn><isbn>9780735407770</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNy7sKwjAUgOGACtbLO2RzKoSk9VgnpSguUsUObuUQUhrJpTbN--vgAzj9y_dPyIKByDMGAGxKEsaKLOWZeM7JIoQXY7wA2CXkUHeKPsrqlrZ-sGh0sHuKjla9GnDU3qGhx74fPMqOjp7eI7oxWnpVskOnZViRWYsmqPWvS7I5n-rykn6fd1RhbKwOUhmDTvkYGsgFcL7NufhffgAWlD2u</recordid><startdate>20090618</startdate><enddate>20090618</enddate><creator>D'Hooghe, Bart</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20090618</creationdate><title>The SCOP-formalism: an Operational Approach to Quantum Mechanics</title><author>D'Hooghe, Bart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_7537226523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Axioms</topic><topic>Hilbert space</topic><topic>Lattices</topic><topic>Mathematical models</topic><topic>Particle spin</topic><topic>Quantum mechanics</topic><topic>Representations</topic><topic>Theorems</topic><topic>Transition probabilities</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D'Hooghe, Bart</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Reconsideration of Foundations-5</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D'Hooghe, Bart</au><au>Khrennikov, Andrei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The SCOP-formalism: an Operational Approach to Quantum Mechanics</atitle><jtitle>Reconsideration of Foundations-5</jtitle><date>2009-06-18</date><risdate>2009</risdate><volume>1232</volume><spage>33</spage><epage>44</epage><pages>33-44</pages><issn>0094-243X</issn><isbn>0735407770</isbn><isbn>9780735407770</isbn><abstract>We present the SCOP-formalism, an operational approach to quantum mechanics. If a State-COntext-Property-System (SCOP) satisfies a specific set of 'quantum axioms', it fits in a quantum mechanical representation in Hilbert space. We present a model in which the maximal change of state of the system due to interaction with the measurement context is controlled by a parameter N. In the case N = 2 the system reduces to a model for the spin measurements on a quantum spin-1/2 particle. In the limit N arrow right infinity the system is classical. For the intermediate cases it is impossible to define an orthocomplementation on the set of properties. Another interesting feature is that the probability of a state transition also depends on the context which induces it This contrasts sharply with standard quantum mechanics for which Gleason's theorem states the uniqueness of the state transition probability and independent of measurement context We show that if a SCOP satisfies a Gleason-like condition, namely that all state transition probabilities are independent of which measurement context induces the change of state, then the lattice of properties is orthocomplemented.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof Reconsideration of Foundations-5, 2009-06, Vol.1232, p.33-44
issn 0094-243X
language eng
recordid cdi_proquest_miscellaneous_753722652
source AIP Journals Complete
subjects Axioms
Hilbert space
Lattices
Mathematical models
Particle spin
Quantum mechanics
Representations
Theorems
Transition probabilities
Uniqueness
title The SCOP-formalism: an Operational Approach to Quantum Mechanics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A41%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20SCOP-formalism:%20an%20Operational%20Approach%20to%20Quantum%20Mechanics&rft.jtitle=Reconsideration%20of%20Foundations-5&rft.au=D'Hooghe,%20Bart&rft.date=2009-06-18&rft.volume=1232&rft.spage=33&rft.epage=44&rft.pages=33-44&rft.issn=0094-243X&rft.isbn=0735407770&rft.isbn_list=9780735407770&rft_id=info:doi/&rft_dat=%3Cproquest%3E753722652%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753722652&rft_id=info:pmid/&rfr_iscdi=true