On long-range interpolation operators for aggressive coarsening
Algebraic multigrid (AMG) is a very efficient scalable preconditioner for solving sparse linear systems on unstructured grids. Currently, AMG solvers with good numerical scalability can still have larger than desired complexities, whereas variants with very low complexities exhibit decreased numeric...
Gespeichert in:
Veröffentlicht in: | Numerical linear algebra with applications 2010-04, Vol.17 (2-3), p.453-472 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 472 |
---|---|
container_issue | 2-3 |
container_start_page | 453 |
container_title | Numerical linear algebra with applications |
container_volume | 17 |
creator | Yang, Ulrike Meier |
description | Algebraic multigrid (AMG) is a very efficient scalable preconditioner for solving sparse linear systems on unstructured grids. Currently, AMG solvers with good numerical scalability can still have larger than desired complexities, whereas variants with very low complexities exhibit decreased numerical scalability, which presents a problem for future high‐performance computers with millions of cores and decreased memory per core. It is therefore necessary to design more sophisticated interpolation operators to improve numerical scalability while preserving low memory usage. Two new long‐range interpolation operators to be used in combination with aggressive coarsening are presented. Their convergence and performance are examined and compared with multipass interpolation, the interpolation currently most commonly used with aggressive coarsening, and a higher complexity AMG variant. While the new interpolation operators require a more complex setup, leading to larger setup times, they exhibit better convergence than multipass interpolation, often resulting in better solve times. Copyright © 2009 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nla.689 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753696355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753696355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3319-5e94fec658f6621bb54559a54765f2ed964954888179152684d5114643e542fb3</originalsourceid><addsrcrecordid>eNp10MFLwzAUx_EgCs4p_gu9eZDOpMlLm5PI0KmMDWEy8BKy7rVEu6Qmnbr_3o2Jnjy9d_jwO3wJOWd0wCjNrlxjBrJQB6THqFIpAyoPd39OU-AZHJOTGF8ppRIU75HrqUsa7-o0GFdjYl2HofWN6ax3iW8xmM6HmFQ-JKauA8ZoPzApvQkRnXX1KTmqTBPx7Of2yfPd7Wx4n46no4fhzTgtOWcqBVSiwlJCUUmZscUCBIAyIHIJVYZLJYUCURQFyxWDTBZiCYwJKTiCyKoF75OL_W4b_PsaY6dXNpbYNMahX0edA5dKcoA_WQYfY8BKt8GuTNhoRvWukN4W0ttCW3m5l5-2wc1_TE_GN3ud7rWNHX79ahPetMx5Dno-GenHycuMF8MnPeffJJZ0wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753696355</pqid></control><display><type>article</type><title>On long-range interpolation operators for aggressive coarsening</title><source>Access via Wiley Online Library</source><creator>Yang, Ulrike Meier</creator><creatorcontrib>Yang, Ulrike Meier</creatorcontrib><description>Algebraic multigrid (AMG) is a very efficient scalable preconditioner for solving sparse linear systems on unstructured grids. Currently, AMG solvers with good numerical scalability can still have larger than desired complexities, whereas variants with very low complexities exhibit decreased numerical scalability, which presents a problem for future high‐performance computers with millions of cores and decreased memory per core. It is therefore necessary to design more sophisticated interpolation operators to improve numerical scalability while preserving low memory usage. Two new long‐range interpolation operators to be used in combination with aggressive coarsening are presented. Their convergence and performance are examined and compared with multipass interpolation, the interpolation currently most commonly used with aggressive coarsening, and a higher complexity AMG variant. While the new interpolation operators require a more complex setup, leading to larger setup times, they exhibit better convergence than multipass interpolation, often resulting in better solve times. Copyright © 2009 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1070-5325</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.689</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>aggressive coarsening ; algebraic muligrid ; Coarsening ; Complexity ; Convergence ; Design engineering ; Interpolation ; Linear systems ; long-range interpolation ; Operators ; parallel computing ; Solvers</subject><ispartof>Numerical linear algebra with applications, 2010-04, Vol.17 (2-3), p.453-472</ispartof><rights>Copyright © 2009 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3319-5e94fec658f6621bb54559a54765f2ed964954888179152684d5114643e542fb3</citedby><cites>FETCH-LOGICAL-c3319-5e94fec658f6621bb54559a54765f2ed964954888179152684d5114643e542fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnla.689$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnla.689$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yang, Ulrike Meier</creatorcontrib><title>On long-range interpolation operators for aggressive coarsening</title><title>Numerical linear algebra with applications</title><addtitle>Numer. Linear Algebra Appl</addtitle><description>Algebraic multigrid (AMG) is a very efficient scalable preconditioner for solving sparse linear systems on unstructured grids. Currently, AMG solvers with good numerical scalability can still have larger than desired complexities, whereas variants with very low complexities exhibit decreased numerical scalability, which presents a problem for future high‐performance computers with millions of cores and decreased memory per core. It is therefore necessary to design more sophisticated interpolation operators to improve numerical scalability while preserving low memory usage. Two new long‐range interpolation operators to be used in combination with aggressive coarsening are presented. Their convergence and performance are examined and compared with multipass interpolation, the interpolation currently most commonly used with aggressive coarsening, and a higher complexity AMG variant. While the new interpolation operators require a more complex setup, leading to larger setup times, they exhibit better convergence than multipass interpolation, often resulting in better solve times. Copyright © 2009 John Wiley & Sons, Ltd.</description><subject>aggressive coarsening</subject><subject>algebraic muligrid</subject><subject>Coarsening</subject><subject>Complexity</subject><subject>Convergence</subject><subject>Design engineering</subject><subject>Interpolation</subject><subject>Linear systems</subject><subject>long-range interpolation</subject><subject>Operators</subject><subject>parallel computing</subject><subject>Solvers</subject><issn>1070-5325</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp10MFLwzAUx_EgCs4p_gu9eZDOpMlLm5PI0KmMDWEy8BKy7rVEu6Qmnbr_3o2Jnjy9d_jwO3wJOWd0wCjNrlxjBrJQB6THqFIpAyoPd39OU-AZHJOTGF8ppRIU75HrqUsa7-o0GFdjYl2HofWN6ax3iW8xmM6HmFQ-JKauA8ZoPzApvQkRnXX1KTmqTBPx7Of2yfPd7Wx4n46no4fhzTgtOWcqBVSiwlJCUUmZscUCBIAyIHIJVYZLJYUCURQFyxWDTBZiCYwJKTiCyKoF75OL_W4b_PsaY6dXNpbYNMahX0edA5dKcoA_WQYfY8BKt8GuTNhoRvWukN4W0ttCW3m5l5-2wc1_TE_GN3ud7rWNHX79ahPetMx5Dno-GenHycuMF8MnPeffJJZ0wg</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Yang, Ulrike Meier</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201004</creationdate><title>On long-range interpolation operators for aggressive coarsening</title><author>Yang, Ulrike Meier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3319-5e94fec658f6621bb54559a54765f2ed964954888179152684d5114643e542fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>aggressive coarsening</topic><topic>algebraic muligrid</topic><topic>Coarsening</topic><topic>Complexity</topic><topic>Convergence</topic><topic>Design engineering</topic><topic>Interpolation</topic><topic>Linear systems</topic><topic>long-range interpolation</topic><topic>Operators</topic><topic>parallel computing</topic><topic>Solvers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Ulrike Meier</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Ulrike Meier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On long-range interpolation operators for aggressive coarsening</atitle><jtitle>Numerical linear algebra with applications</jtitle><addtitle>Numer. Linear Algebra Appl</addtitle><date>2010-04</date><risdate>2010</risdate><volume>17</volume><issue>2-3</issue><spage>453</spage><epage>472</epage><pages>453-472</pages><issn>1070-5325</issn><eissn>1099-1506</eissn><abstract>Algebraic multigrid (AMG) is a very efficient scalable preconditioner for solving sparse linear systems on unstructured grids. Currently, AMG solvers with good numerical scalability can still have larger than desired complexities, whereas variants with very low complexities exhibit decreased numerical scalability, which presents a problem for future high‐performance computers with millions of cores and decreased memory per core. It is therefore necessary to design more sophisticated interpolation operators to improve numerical scalability while preserving low memory usage. Two new long‐range interpolation operators to be used in combination with aggressive coarsening are presented. Their convergence and performance are examined and compared with multipass interpolation, the interpolation currently most commonly used with aggressive coarsening, and a higher complexity AMG variant. While the new interpolation operators require a more complex setup, leading to larger setup times, they exhibit better convergence than multipass interpolation, often resulting in better solve times. Copyright © 2009 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nla.689</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-5325 |
ispartof | Numerical linear algebra with applications, 2010-04, Vol.17 (2-3), p.453-472 |
issn | 1070-5325 1099-1506 |
language | eng |
recordid | cdi_proquest_miscellaneous_753696355 |
source | Access via Wiley Online Library |
subjects | aggressive coarsening algebraic muligrid Coarsening Complexity Convergence Design engineering Interpolation Linear systems long-range interpolation Operators parallel computing Solvers |
title | On long-range interpolation operators for aggressive coarsening |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20long-range%20interpolation%20operators%20for%20aggressive%20coarsening&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Yang,%20Ulrike%20Meier&rft.date=2010-04&rft.volume=17&rft.issue=2-3&rft.spage=453&rft.epage=472&rft.pages=453-472&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.689&rft_dat=%3Cproquest_cross%3E753696355%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753696355&rft_id=info:pmid/&rfr_iscdi=true |